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Abstract

Gravitational clustering leads to formation of galaxies, clusters of galaxies and other large scale
structures in the universe. The main theme of this thesis is to study aspects of gravitational clustering

in an expanding universe.

The primordial density fluctuations which are imprinted in the CMBR sky amplify due to gravity
and lead to structure formation. As long as these fluctuations are small, they grow independently
at various scales and their growth is correctly predicted by the linear perturbation theory. However,
when fluctuations become large, mode coupling becomes important. Cosmological N-body simula-

tions are the main tool for studying nonlinear gravitational clustering.

This thesis can be divided into two parts. In the first part (Chapter 2 and Chapter 3), we discuss
consequences of mode coupling in nonlinear gravitational clustering and try to understand how per-
turbations at various scales affect the growth of one another. In particular we focus on the effects
of perturbations at small scales (substructure) on the growth of perturbations at larger scales. In the
second part (Chapter 4, Chapter 5 and Chapter 6 ) we study limitations of cosmological N-body
simulations due to finite volume. We try to understand how size of the simulation volume affects
various physical quantities of interest like two-point correlation function, mass function, formation

and destruction rate, Skewness etc. A very short chapter-wise summary of the thesis is as follows.

In Chapter 1 we give an introduction of Friedmann-Robertson-Walker (FRW) model and discuss
basics of structure formation required for the study. We start with an overview of observations of
large scale structure of the universe and motivate FRW model in §1.1. A few generic solutions of
the Friedmann’s equations are discussed in §1.2. We discuss dynamics of objects in an expanding

background and give a short introduction of mode coupling in §1.3. We introduce commonly used
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statistical indicators of gravitational clustering like power spectrum, two-point correlation function
and mass variance in §1.4. We discuss semi-analytical models of nonlinear gravitational clustering
like spherical collapse model and Press-Schechter formalism in §1.5. We also give a brief introduc-
tion of the Zeldovich approximation and the adhesion approximation in §1.5. We end this chapter

with an overview of cosmological N-body simulations in §1.6.

In Chapter 2 we address the issue of mode coupling in nonlinear gravitational clustering and ask
how presence of small scale perturbations (substructure) affects the growth of perturbations at large
scales. We study the collapse of a plane wave, which represents a large scale perturbation, in the
presence and absence of substructure (Bagla, Prasad & Ray, 2005). We find that the plane wave
collapses to a thin sheet (pancake) which gets thinner when small scale perturbations are introduced
isotropically. We conclude that the scattering between clumps (formed due to collapse of small scale
perturbations) helps in the dynamical relaxation of the plane wave and the pancake becomes thinner.
Apart from this, in this study we also try to model the effects of small scale perturbations in the form
of artificial viscosity. Applying the Burger’s equation, we find that it is possible to find a common

value of viscosity for every multistream region which forms due to the collapse of the plane wave.

In Chapter 3 we study the role of substructure in gravitational clustering using a set of numerical
experiments i.e., cosmological N-body simulations (Bagla & Prasad, 2008). In this study we con-
sider models which are more general than the models which we have considered in the earlier study
(Chapter 2) for our investigations. We simulate the collapse of a pure power law model (n = —1) and
considering it as the reference model we also simulate two other models in which we either suppress
or enhance power at small scales. We analyze our results using visual comparison (slices), two point
correlation function, Skewness and number density. We find that the effects of substructure on the
collapse of perturbations at larger scales are not as significant in a general case as they are in the case

of planar collapse.

The second part of this thesis contains results of our investigation of effects of finite box size in
cosmological N-body simulations. In Chapter 4 we present a prescription for estimating the errors in
various physical quantities of interest due to finite size of cosmological N-body simulations (Bagla &

Prasad, 2006). We mainly focus on corrections in mass variance, mass function, multiplicity function
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and comoving number density in this chapter. We also discuss the applications of our prescription
for a power law (n = —2) and LCDM models. We show that the number density of low mass haloes
1s overestimated when the size of the simulation box is reduced at the expense of the density of more
massive haloes. We also show that the correction due to finite box size is maximum at the scale of
nonlinearity for mass function and falls at small and large scales. The main conclusion which we
draw from this study is that simulations with little or no power at large scales are not affected by the
finite size of the simulation box. For other models the effects of a finite box size are important.

We continue our investigation of effects of finite box size in cosmological N-body simulations
in Chapter 5. We begin with a quick review of the Press-Schechter formalism and following the
prescription of (Sasaki, 1994) show that the rate of change of number density of haloes, in a given
mass range around a mass scale, can be split into formation rate (the rate at which haloes in that mass
range form due to merging of smaller haloes) and the destruction rate (the rate at which haloes in that
mass mass range merge and form bigger haloes). Following the formalism which we have developed
in Chapter 4, in this chapter we give analytic expressions for correction in formation and destruction
rate and discuss their application for power law (n = —2) and LCDM models (Prasad, 2007). We
also apply our formalism to find corrections in merger rate.

In Chapter 6 we study the effects of box size on Skewness and present a detailed comparison of
our analytical results with N-body simulations (Bagla, Prasad & Khandai, 2008). We compute aver-
age two point correlation function, Skewness and number density of collapsed haloes and compare
these with N-body simulations. We have found that in most cases theoretical estimates fit the results
of simulations. We also give an analytic expression for corrections in Kurtosis (S4) and study the
effects of finite volume of cosmological simulations on pair velocity.

This thesis is based on the following publications:

1. Bagla J.S., Prasad J. and Ray S. 2005, MNRAS 360, 194 (astro-ph/0408429)
Gravitational collapse in an expanding background and the role of substructure I: Planar

collapse.

2. Bagla J.S. and Prasad J 2008, Submitted to MNRAS (arXiv:0802.2796 [astro-ph])

Gravitational collapse in an expanding background and the role of substructure II: Excess



power at small scales and its effect on collapse of structures at large

. Bagla J.S. and Prasad J. 2006, MNRAS 370, 993 (astro-ph/0601320)
Effects of the size of cosmological N-Body simulations on physical quantities — I: Mass Func-

tion.

. Prasad J. 2007, J. Astrophys. Astr. 28, 117 (astro-ph/0702557)
Effects of the size of cosmological N-Body simulations on physical quantities —II: Formation

and destruction rate.

. Bagla J.S., Prasad J. and Khanadai N., 2008, Submitted to MNRAS (arXiv:0804.1197[astro-
ph)

Effects of the size of cosmological N-Body simulations on physical quantities — III: Skewness
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Chapter 1

Introduction

Observations show that galaxies in the universe are moving away from each other due to expansion
of the universe (Hubble expansion), discovered by Edwin Hubble (Hubble, 1929). If we extrapolate
the density and temperature of the universe back in time then they diverge at a moment of time in the

past, called the big bang.

The matter distribution in the universe at very large scale is uniform, however, at small scales
it is highly clustered. The earliest measurement of fluctuations in the universe is in the form of
temperature anisotropies of Cosmic Microwave Background Radiation (CMBR). The presence of
anisotropies in the CMBR at all scales measured by WMAP and other experiments shows that the
matter and radiation distribution in the early universe was not perfectly uniform; there were fluctua-
tions of the order of one part in 10° (Smoot et al., 1992; Hinshaw et al., 2003; Hinshaw et al., 2007).
Gravitational amplification of the primordial density perturbations imprinted in the CMBR is gener-
ally assumed to be responsible for structure formation in the universe (Peebles, 1980; Peebles, 1993;
Padmanabhan, 1993; Liddle & Lyth, 2000; Bernardeau et al., 2002; Padmanabhan, 2002; Peacock,
1999).

The homogeneous and isotropic model of the universe, called the Friedmann-Robertson-Walker
(FRW) model, is introduced in §1.1. Some of the important solutions of FRW model are discussed
in §1.2. We discuss the dynamics of particles in an expanding background and mode coupling in

nonlinear gravitational clustering in §1.3. Some of the important statistical measures of gravitational

1



2 CHAPTER 1. INTRODUCTION

clustering are discussed in §1.4. We give an overview of various aspects of nonlinear gravitational

clustering in §1.5. A brief overview of cosmological N-body simulations is given in §1.6.

1.1 Friedmann-Robertson-Walker (FRW) model

Gravity is the main force at very large scales and is described by Einstein’s field equation of general
relativity.

1 8nG
R,uv_iRg,uv: 6—47;1\/ (1.1)

Here R,y is the curvature tensor which represents the geometrical structure of the universe and 7,y
is the energy-momentum tensor which represents the various species of matter and energy in the
universe.

The universe at very large scales is homogeneous and isotropic (cosmological principle). As a
result of homogeneity and isotropy at large scales the geometrical structure of the universe is given by
the following space-time metric called the FRW metric (Friedmann, 1922; Robertson, 1929; Walker,
1936; Lematre, 1931a; Lematre, 1931b)

r2
ds® = ctdi* —a* (1) ﬁ + 12(d6* + sin” 0d¢?) (1.2)

The FRW metric is characterized by two parameters named the spatial curvature or the curvature
constant k and the time dependent function a(r) called the scale factor. As a consequence of general
theory of relativity the functional form of a(f) depends on the matter and energy content of the
universe and the value of the curvature constant k depends on the total energy content of the universe.
If we normalize the scale factor appropriately then k can take one of the three values 0, +1.

The FRW metric can also be written in the following form :
ds?® = a®[dn? — {dy? + r*(d6* +sin” 0d¢?)}] (1.3)

where 1 (called conformal time) and % are defined as follows.
(

r, fork=0;

cdt
n=/— and x=<sin"!'r, fork=1; (1.4)
a(r)

sinh™'r, fork=—1;
\
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The matter and energy in the universe can be taken in the form of a perfect fluid which is char-
acterized by the following energy-momentum tensor 7y in a coordinate system in which the fluid

remains stationary i.e., the comoving frame
7;N = pV,uVV - P(g,uv - V,uvv) (1.5)

Here V,, = (1,0,0,0) is the four velocity of the fluid and p and P are its energy density and pressure

respectively.

1.1.1 Friedmann equations

On the basis of the FRW metric (equation (1.2)) and the energy-momentum tensor for a perfect
fluid (equation (1.5)), Einstein field equation (1.1) can be written in terms of the following pair of

equations called the Friedmann equations

a  k  8nGp
a Kk _ 1.6
a? + a? 3 (1.6)
and
.. )
k
294 (a—2 + —2> — _87GP (1.7)
a a a

Using equation (1.6) we can rewrite equation (1.7) in the following form:

a AnG
T__ P 1.
L= (p+3P) (1)

The Friedmann equations (1.6) and (1.8) are generally written in terms of the Hubble parameter H (),

the density parameter Q(¢) and the deceleration parameter ¢(z) which are defined as follow:

1 da a 3H? a(t)dl(t
A= = 0= o e

Here p,(t) is called the critical density. In terms of these parameters equation (1.6) can be written as

where p.(t) =

k=H>a*(Q—1) (1.10)

by convention

0; for p=pcorQ=1

k=41, for p>peorQ>1 (1.11)

—1; for p<peorQ<l
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The universe is said to be spatially flat, closed and open for k = 0,1 and —1 respectively. Equa-

tion (1.8) can be written as

3Q 1
4= (5 +w (1.12)

Equation (1.12) shows that the expansion of the universe slows down with time i.e., decelerates for
w>—1/3.

Friedmann equations (1.6) and (1.8), do not have any stationary solution. In order to get such
solution, Einstein added a constant A called the cosmological term in the field equation (1.1). This
term was abandoned soon after the discovery of the expansion of the universe and was assumed to
be zero. However, recent observations have shown that this is not the case, i.e., this term is nonzero.

When we consider a nonzero cosmological constant then we get the following set of the Friedmann

equations
@ k 8aGp A
=4+ == — 1.13
a’  a? 3 3 (1.13)
and
a 4nG A
- 3P) + — 1.14
; 5 (P+3P)+ (1.14)

Friedmann equations (1.13) and (1.14). have three unknown variables a(t),p(¢) and p(t) and in
order to make this system closed one more equation is needed which can be taken in the form of the

following energy conservation equation
d(pa®) = —Pd(a®) (1.15)

Substituting P = wp, the above equation can be solved as

p(a) o a=>(+W (1.16)
for specific values of w:
( 6%; for nonrelativistic matter (w=0)
p(a) =< #; for relativistic matter (w=1/3) (1.17)
\ constant; for cosmological constant (w= —1)

using equation (1.17), Friedman equation (1.13) can be written as

H2(1) = H? {Qm (%)34—9,(6;—0)44—9,\4—(1—9) (“—0)2} (1.18)

a
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1.1.2 Cosmological redshift

The observed wavelength A of electromagnetic waves which we receive at time ¢ = ., from the
distant parts of the universe is found to be greater than their emitted wavelength A, due to expansion
of the universe. This is called the cosmological redshift (z = Ayps/Aem — 1). In order to find a relation
between the scale factor a(z) and cosmological redshift z, we consider a source of light at a radial
distance r from an observer and assume that the source emits two pulses of light at time 7., and
tem + dtey and they are received by the observer at time ., and ;5 + dt,ps Tespectively then from

equation (1.2)

tobs d[’ tnbs'f'dtobs dtl
/ / ¢ / il (1.19)
1=k Siw alt))  Jitdin a(t))
which gives (Weinberg, 1972)
dtops _ a([em) (1.20)

dten a(tobs)
because the comoving distance between the two points does not change.

If the the actual wavelength of light pulse is A, and we observe it at wavelength A, then

}Vobs Vem d Lobs a (tobs> 1
xem Vobs dtem a (tem) a

1.2 Solutions of the Friedmann equations

1.2.1 Einstein-de Sitter model

This is the simplest cosmological model and we will use it for most of the studies in the present
thesis. If we consider a flat cosmological model i.e., k = 0 and assume Q, = Qx = 0,Q,, = 1 then

the Friedmann equation (1.6) can be easily solved in the following form

1\*? 2
a(t) =a(ty) (l_o) where 79 = 3, (1.22)
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1.2.2 Closed and open models

In the case of closed matter dominated model, i.e., £2,, > 1, Friedmann equation (1.6) can be written

as

a2

- (2) 020 (2)]

This equation can be easily solved in the following parametric form

a Q
a= %(1—0056); Amax = a(to) (Qmil>

Qp
2Ho(Qy — 1)3/2

/f max

t= - (0—sin®); fyuy =

(1.23)

From the above equations we note that in this case the universe starts expansion at the big bang
(6 = 0), reaches a maximum size (6 = &) and finally collapses in a big crunch (6 = 2m).
In the case of matter dominated open universe i.e., £, < 1 or k = —1, we get the following

parametric solutions.

a Q
a= ";x (cosh® —1); amax—a(zo)(l_gm)

Qp
2Hy(1 —Q,,)3/2

1
t= % (sinh® —8); tyux = (1.24)

In this case the universe keeps expanding forever.

1.3 Cosmological density field

1.3.1 Dynamics of particles in an expanding universe

In a homogeneous and isotropic universe cosmological objects move only due to the expansion of
the universe. In presence of density fluctuations gravitational force due to these fluctuations plays an
important role in the dynamics.

In absence of clustering, the distance r(z) between any two objects in the universe changes as :

r(t)<a(t) or r(t) =a(t)x
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Here x is comoving distance and it does not change with time for a homogeneous and isotropic

universe. However, when there is clustering of matter
r(t) = a(t)x(r) (1.25)

and velocity is given by
r(t) =a(t)x(t) +a(t)x(t) = v+ v, (1.26)

The above equation shows that one part of the velocity of objects is contributed by the expansion of
the universe i.e., vy, and another part v, called the peculiar velocity, is contributed by the gravita-
tional force due to density fluctuations. The gravitational potential that drives the dynamics can also
be split into two parts, ¢, due to the smooth universe and ¢ due to density fluctuations around the
smooth background.

From equation (1.26) we can write
(1) = d(1)x(t) + 2a(0)x(t) + ax(t) = =V (dp + 0) (1.27)
The terms corresponding to the background expansion are identified as
HOX(E) = —V,y(t) o By(t) = —%a(t)d(t)xz (1.28)

The remaining parts represent the equation of motion of the object due density fluctuations

ax(t) +2a(0)x(t) = —V,¢ (1.29)
or
d?x(t) | a(t)dx(r)  V.o(x,1)  Vid(x,1)
dr? +2a(t) i~ a(t) a0 (1.30)
and in terms of the peculiar velocity v, = v:
dv(t) a(t) .\ ViO(x1)
a0 == (1.31)

This equation also shows that when the distribution of matter is uniform, the peculiar velocity decays
as v(t) e 1/a(t) with the expansion of the universe. In such a case there is no gravitational process

for generating v.
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1.3.2 Mode coupling

The cosmological density perturbations are characterized by density contrast 8(x,¢) which is defined

as follows

5(x,1) = W (1.32)

Here pj,(r) is the average density of the universe.

The gravitational potential ¢(x,¢) due density fluctuations is given by
V20(x,1) = 4nGpy, (1)a>d(x, 1) (1.33)

and due to smooth background

V(1) = 4nGpy(1)a” (1.34)

In a flat cosmological model (k = 0) the density contrast 8(x,¢) can be decomposed into its fourier

components
) = [ K a0y exp(iky (135
x,t)= [ —= exp(ik.x .
) (2703 k pit
and inverse transform
d3x .
Si(r) = / £ X8 (x, ) exp(—ik.x) (1.36)
We can consider the density field to represent an underlying distribution of point particles
1 N
p(X,Z) =3 ZI’I’IiSD(X—Xi(t)) (1.37)
a’(t) =

Where 8p is the Dirac delta function. The average density p,(¢) can then be written as

pp(t) = V/d xp(x,t) = Vol where M = i:ZI:Nmi (1.38)

and the density contrast

p(x,1) 14
6X,l‘ = —1=— miOp(x—x;)—1 (1.39)
(1) Po(t) Ml:1,N D )
or in fourier space
1 .
Sk(t) = M . Z miexp(—lk.xi) — 83D(k) (1.40)
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from equation (1.40) we can write

) . 1 i
Ok —I—ZZSk = i:ZI’Nmi [—ik. (x, —|—2§)’(,~) — (k.xi)z] exp(—ik.x;)
The RHS of the above equation can be simplified using equation (1.30)
" a 1 ) Vo, .
Ok + 2581( = i§Nmi [—zk. (— a‘i”) — (k.xi)z] exp(—ik.x;) (1.41)
From Poisson equation (1.33) we can write
kO (
x¢ —4 GZZ k(t expzkx)
k0
and so equation (1.41) can be written as
8k +2%8, = 4GSk + A — B (1.42)
a
where
Kk k.(k-—K
A =21Gp, Y, X k( % 2> OO K/ (1.43)
K'#0,k#k/ K’ [k~ K|
and
1
Bx=— Y mi(kx;)’exp(—ik.x;) (1.44)
M,y

Here Ax and By characterize mode coupling between different scales in non linear gravitational
clustering. From equation (1.42) we observe that for all k with Ax — Bx = 0, perturbations at various
scales evolve independently and the equation can be easily solved analytically 1.e., the linear regime.

However, for a general case equation (1.42) cannot be solved analytically unless Ax — Bx = 0.

1.3.3 Linear limit

In the case when amplitude of density perturbation is small i.e., 8; < 1, we neglect the mode coupling
and write equation (1.42) as
Ok + 2gsk = 4nGp,dxk (1.45)
Equation (1.45) can be easily solved for an Einstein-de Sitter model i.e., a(t) < 23 and Po =
1/6nGt>.
Sk(1) =Ar*3+ Bt~ or 8x(a)=Aa+Ba3? (1.46)
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Note that the first part of the above equation can be identified with the growing mode and the second
part with the decaying mode. It can be shown that the Hubble parameter H(¢) which is given by

equation (1.18) is also a solution of equation (1.45) and coincides with the decaying solution (if

Q, =0 and wg, = —1). Using the method of Wronskian the growing solution b(¢) can be written as
X2 ra dq a’H?

For a flat cosmological model with nonrelativistic matter and cosmological constant
1 2
X=14+Qu(-—1)4+Qx(a—1) (1.48)
a

If we use the growing solution b(z) as a “time” parameter then the equation of motion (1.31) can be

written as
du 30
d_b__iz(u_g) (1.49)
where 5
dx 2 Pp ab
u=—-8 v where y 3Hng¢ and Q (pc) (ab) (1.50)

1.4 Statistical measures of gravitational clustering

1.4.1 Two point correlation function and power spectrum

In a uniform (Poisson) distribution of point particles with average number density 7, the joint prob-
ability dP(1,2) of finding two particles in two infinitesimal volume elements 8V, and 8V, around

positions ry and r; respectively is given by
dP(1,2) = a*8V, 8V, (1.51)

In this case the probability of finding a particle in a volume element 8V is independent of the prob-
ability of finding a particle in a volume element 6V,. However, this is not the case when there is

clustering of particles and the joint probability is modified

dP(1,2) = @28V V5 [1 +&(r1,12)] (1.52)
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Here &(ry,r;) is called the two point correlation function which can depend on r; and r; only
through |r; — r;| for a statistically homogeneous and isotropic distribution of points i.e., &(ry,ry) =
E(|ri —rz2]) = &(Jriz2|). The two point correlation function &(r) can also be defined in terms of the
conditional probability dP(1]2) of finding a particle (labeled “1”) in an infinitesimal volume 8V

around the position r given that there is another particle (labeled “2”") at r = 0.
dP(1]2) = 8V [1 +E(r)] (1.53)

The two point correlation function &(r) and density contrast 8(x) are related as
E(r) = (d(x+1)d(x)) (1.54)

Here averaging is done over an ensemble of large spatial regions of the universe that are statistically
independent from each other. If we write density contrasts 8(x +r) and d(x) in terms of Fourier

components and simplify equation (1.54) we get
6= [ A5 Pwexpin (159
r=[| —= iKk. :
ry TP
Here P(k) is called the power spectrum and is defined as
(88%) = (21385 (k —K')P(k) (1.56)

Where 8(D3) (k —K’) is the Dirac delta function. The two point correlation function &(r) and power
spectrum P(k) are the two most important statistical measures used to study gravitational clustering.
This is because in the case when cosmological perturbations are Gaussian, their statistical properties

can be completely characterized by the two point correlation function &(r) or power spectrum P(k).

1.4.2 Mass variance

As a result of the homogeneity and isotropy of the universe the first moment or mean < & > of the

density contrast 8(x) vanishes. However, the second moment is nonzero and is given by

1
o= (8) = 5 / dkk>P (k) (1.57)
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The above equation shows that G% does not converge for most power spectra and it does not contain
information about the contribution of perturbations at various scales. Therefore, it is more useful to
represent the second moment by mass variance 6 (r), which is the variance of the mass inside cells
of various sizes, after smoothing the density by a window function W.

(M—<M>)*) <3M>>
<M >2? <M >2

1
o’ (r) = =33 / dkk*P(k)|W (k,r)|? (1.58)

where M = 4zpr’ /3. For a spherical-top hat window W (k, r) is given by

sinkr — krcoskr
Wik,r)=3 ( 3,3 ) (1.59)
and in real space
== for [x—X|<r
W(jx—x|,r) ¢ (1.60)
0; Otherwise
It is more useful to express 62(r) in the following form
dk (KPP(k dk
)= [ (02 wikn = [ Eawment (L61)

In the above equation A%(k) = k>P(k) /2n? is called the dimensionless power spectrum which repre-
sents the power per logarithmic interval in k.

For a power law model i.e., P(k) o< k" we get the following scaling relationship

6%(r) o< r ") and 6*(M) o« M~ F3)/3 (1.62)
or (n+3) (n+3)/3
o2 (r) = <rL,> and o2(M) = <A];I,> (1.63)

Where the scale of nonlinearity r,; is identified with the scale at which mass variance 62 becomes

unity.

1.4.3 N-point correlation functions

We can generalize the definition of the two point correlation function as given by equation (1.52) and

define the N-point correlation function Ey(ry,r2,..,1,,) in terms of the joint probability of finding
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particles in infinitesimal volume elements 8V;, V5, ...,8Vy around the positions ri,r>, ..., Iy respec-
tively.

We get the following equation for three point correlation function corresponding to equation (1.52)

dP(1,2,3) = P8Vi8VadV3 [1 +&(1,2) +£(2,3) +£(3,1) + {(1,2,3)] (1.64)

Here & and C are two and three point correlation functions respectively.
The N-point correlation functions &y (ry,r2,...ry) can also be written in terms of the connected
parts of the joint ensemble average of density contrast 8(r) at N different spatial points ry,rp,...,ry

(Bernardeau et al., 2002).

En(ri,rz,..rn) = (3(r1)d(r2)...0(rn)), (1.65)

If we represent density contrasts at positions ry,rz,...,ry by 81,02, ..., 0y respectively, then some of

the low order correlation functions are as follows

E(r1,r2) = (8182), = (8182) — (81),.(82), (1.66)
(r1,r2,13) = (816283),.
= (818283) — (8182), (83), — (8283) . (81) . — (8381),. (82) . — (1), (82),. (83). (1.67)

The N-point correlation functions Ex(ry,rz,...,ry) are also called the reduced N-point correlation
functions since they depend only on the fully connected parts of the graphs representing the complete
correlations.

On the basis of the ensemble average of various power of density contrast at the same position,

we can also define the moments of density contrast in the following way
mp=<9>,=<8>
my =< & > =< & > — < §>2
e B —e & 2.2 3
m3 =<0 >,=<& >-3<d ><d> — <> (1.68)

When the density field is Gaussian, its statistical properties can be completely characterized by the

two point correlation function and the power spectrum. However, for a non-Gaussian case we need
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to specify correlation functions of all orders. It has been found that even if we begin with a purely
Gaussian random field, gravitational clustering can generate non-Gaussianity and in that case higher

moments are also needed to completely characterize the statistical properties of the density field.

1.4.4 The moments of counts in cells

Apart from the N-point correlation functions &y, the statistical properties of cosmological density
field for a general case can be represented by the moments of the number of objects (counts) in cells
of different size (Peebles, 1980). In order to compute the moments of counts we put cells of equal
size around the positions of randomly chosen particles and count the number of particles in these
cells. In general, we divide cells into sub-cells that are sufficiently small such that a sub-cell can
have either zero or one particle.

If we consider a sub-cell labeled by ’i” having »; particles (1 or 0) in its volume dV; and consider

that the average density of particles is 7, then
adv; = (n;) = (nf) = (n}) .... (1.69)
The total number of particles in a cell (count) is given by

N=Yn; (1.70)

From the above equation, the first moment of counts in cells gy (mean) can be written as
= (N) =) (n;) =nV (1.71)
i
Here 7 is the average number density of particles and V' is the volume of the cell. In order to compute
the second moment >, we need to compute
<N2> :Z<n?>+z<ninj> (1.72)
i i
In the above expression < n;n; > can be related to the joint probability dP(i, j) of finding the particles

labeled by i and j in volume elements dV; and dV/; respectively (see equation (1.52)).

= (min;) = n*dvidV; [1 +&(r;;)] (1.73)
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From equation (1.69), (1.71), (1.72) and equation (1.73)
(N*y =iV + (aV)* +i* / dvidvi&(r;)) (1.74)
v
The second moment 1, is given by

U = <N2> — <N>2 =nV —I—flz /VdV[deé(l’[j)
=+ /V AVidVit,; (1.75)
From the above equation we note that the second moment w, and the average two point correlation
function 52 are related in the following way

— 1 1
=12 /VdVidei(rij) =2 (2 — pur) (1.76)

In the same way we can relate the average three and four point correlation functions Z_; and 1 to the

third and fourth moments p3 and py respectively.

- 1
CZE(H3—3M2+2,U1) (1.77)
1

and

_ 1
=z (s — 63 = 33 + 11 — 6u1) (1.78)
1

It has been found that in the hierarchical gravitational clustering the N-point average correlation

functions EN are related to the average two point correlation function ?; in the following way
Ev = SnEV! (1.79)

In practice estimates of moments are restricted to first few moments and one does not compute the

full hierarchy.

1.5 Nonlinear gravitational clustering

The linear perturbation theory can be used for following the growth of density perturbations when

|8] < 1. Galaxies and other large scale structures in the universe represent large fluctuations, i.e.,
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O > 1; these have to be studied in an appropriate framework. In the present section we discuss some
of the important approximations and semianalytic techniques which have been useful in modeling
nonlinear gravitational clustering. In particular, we will discuss two approximations: the Zeldovich
approximation and the adhesion approximation as these are most relevant for our studies. We also

give a short overview of the spherical collapse model and the Press-Schechter formalism.

1.5.1 The Zeldovich Approximation

In order to model nonlinear gravitational clustering of matter, we work in the fluid limit and study
dynamics in the Eulerian or Lagrangian framework. In the Eulerian system, physical properties like,
density, etc., at fixed spatial positions are evolved using fluid equations. However, in the Lagrangian
system, in place of evolving physical quantities at a fixed location, their values along the trajecto-
ries of fluid elements are evolved. Zeldovich (1970) proposed that linear perturbation theory for
displacements in Lagrangian system can be used in the mildly-nonlinear regime for density contrast.
In the Zeldovich approximation the trajectory of a particle labeled by Lagrangian coordinate g is
perturbed in the following way:
x(q,7) = q+b(t)p(q) (1.80)
Where p(q) is the initial velocity and b(r) is the linear growth factor. From the conservation of mass,

initial density po(¢g) and density p(x,¢) at time ¢ are related as

p(x,1)d’x = po(q)d’q

or
Po(q)
p(x,t) = (1.81)
16 — b(t) Dij(q)]
Here D;i(q) = —dip’(q), is the deformation tensor. If we choose a coordinate system in which 2;;
is diagonal and consider that the eigenvalues of D;; are A1, A3 and A3 then
p(x) =po(a) [T [1—b)i(g)]" (1.82)

i=123

In order to find an expression for p(q) we consider the small perturbation limit of equation (1.81)

p(x,1) = po(q) [1 +b(t)Vap(q)] = po(q) [1 +5(t)Vep(q)] (1.83)
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From the above equation density contrast is given by

8(x,1) = —b(1)V4p(q) (1.84)
If we consider the initial velocity field p(q) irrotational i.e., p(q) = V,00(q) then

8(x,1) = —b(t)V400(q) (1.85)

Comparing this equation with Poisson equation we get

1 a
%o = 47‘tpra2b¢ Y (1-80)
and so
a
P(a) = Vo=~ Vy (1.87)

where Y is given by equation (1.50). This is an interesting result because it shows that in the Zel-
dovich approximation the velocity p is proportional to V¢(q). This approximation is used to set up
initial condition in cosmological N-body simulations.

In the Zeldovich approximation, gravitational collapse of a three dimensional overdense region
firstly occurs along the axis corresponding to the largest A and leads to formation of a two dimen-
sional sheet like structure of high density (finite two dimensional density) called a pancake. Since
in the Zeldovich approximation velocity and acceleration are always parallel to each other, it fails to
describe the motion of particles after their trajectories intersect each other. In order to rectify this
problem and improve the validity of the Zeldovich approximation many suggestions have been pro-
posed. One of these is known as the adhesion approximation (Kofman & Shandarin, 1988; Gurbatov
et al., 1989; Weinberg & Gunn, 1990; Shandarin & Zeldovich, 1989; Matarrese et al., 1992; Brainerd
et al., 1993; Bagla & Padmanabhan, 1994).

1.5.2 Adhesion approximation

Zeldovich approximation fails to take into account the change in gravitational potential when parti-
cles approach each other, or to change the direction of motion after shell crossing. As a result the
thickness of the pancake keeps growing. In order to solve this problem, it has been suggested that par-

ticles can be confined to overdense regions by introducing an artificial viscosity term in the equation
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of motion (Kofman & Shandarin, 1988; Gurbatov et al., 1989; Weinberg & Gunn, 1990; Shandarin
& Zeldovich, 1989). This approximation can be motivated from the Zeldovich approximation in the
following way.

From equation (1.80) the peculiar velocity in Zeldovich approximation is

u = ax(t) = abp(q)

In terms of a new variable @i = u/ab, the above equation can be written as

i = p(q) (1.88)

as p(q) does not change with time so we can write
da di
—=—+4(0.V)i= .
7 db+(u Ja=0 (1.89)

in the Adhesion approximation we replace RHS by a viscous term

Ju + (@.V)i) = vV’ (1.90)

In the limit when v is very small contribution to the RHS comes mainly from the regions where V2ii
is large i.e., caustics.
In order to solve equation (1.90) we need to supplement it by the continuity equation, which can

be written in terms of a variable | = a?p, in the following way
—+7(ﬂﬁi):0 (1.91)
Equation (1.90) is called the Burger equation and can be solved analytically in one dimension in the

1 1/2 e
U()C,b) = (m) /exp

following form

2v 4vh

v(g) <x—q>2] da

where i = —Vy and it = —2vVInU.

1.5.3 Spherical collapse

The spherical collapse model is one of the examples in which an analytical prescription for finding

the growth of perturbations in the nonlinear regime exists. In this case a spherical overdense region
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is modeled as a closed FRW universe (k = 1) in an otherwise uniform background which is modeled
as a flat FRW universe (k = 0). The densities of the overdense region and background are evolved
using Friedmann equations. In place of using Friedmann models, in what follows we will solve this
problem using Newtonian mechanics which also gives the same results.

If we consider that the total mass within a shell region is M (which does not change during

collapse) and the radius at time 7 is R(¢) then

.. GM
and so
R*(t) GM
TR +E (1.93)

Here E is an integration constant which can be identified with the total energy of the shell. If we
consider that the energy of the system is negative, as is required for formation of a bound system,

then the above equation can be solved with the following parametric solution

GM Rmax

R(G):E(l—cosﬂ):A(l—cosﬂ): (1 —cosB) (1.94)
1(6) = %(e—sine) — B(0—sin6) = t”;:x (6 —sin®) (1.95)

where A2 = 2EB?, Ryax = 2A, tyax = BT
Equation (1.94) shows that due to gravitational attraction, the expansion rate of the overdense
regions slows down in comparison to the background. After reaching a maximum size R, (called
the turn-around radius) at time #,,,,,, the overdense region stops expanding and begins to collapse
At turnaround:
GM GM

— R = — = 2A 1.96
Rmax nax E ( )

We expect the overdense region virializes before collapsing to r = 0. At virialization:

E =

U _ GM R _ GM _ Ry
2 2R, WoE T 2

(1.97)

From equation (1.94) we can write an expression for the density of the overdense region in the

following way
M M

T 4nR3(f)  4mA3(1 —cosH)?

p(t) (1.98)
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If we model the expansion of background by the Einstein-de Sitter model then the background density

P»(t) evolves as
1

Pp(t) = 6nGP2 (1.99)

From equation (1.98) and equation (1.99) we can write an expression for the nonlinear density con-

trast

MB2 s 2
s PO _ 9 (GMEY [8() —sinb()
pp(t) 2\ A3 [1—cosO(1)]?
Using the fact that A> = 2EB?, and E = GM /24, we get

9 (6 —sin®)?
40=z+——"""*== 1.100
to=3 (1 —cos0)? ( )
In order to compare the nonlinear and linear density contrast we expand the above equation around
6=0 5
8, &
9 (6 —sin®)> 9[9—(9—€+m—-->] 3,
1+0== =_ ~1+—0 1.101
+ 2(1—cosB)? 2 REEANE 20 ( )
(€5
and so
3 2
&(0) = %9 (1.102)

and in the linear limit

1/3
0(1) ~ (6’” ) . and R(t)~ RZ“*"GZ

S max

and so

2/3
81() = (67“) or &(t) o alf) (1.103)

tmax

Note that this is exactly the same result as is given by linear perturbation theory (equation (1.46)).
From equation (1.103) and (1.100) we can easily compute the linear and nonlinear density contrast

respectively at the turn-around i.e., 8 = T, =ty

% ~ 1.06; for linear
5turn = (1.104)

2 .
91% —1~4.6; fornonlinear
If we consider that the nonlinear density contrasts at the turn-around and virialization are 9y, and

3,ir respectively and use the fact that p o< 1/R3, and p, o 1/12, then

) . vir 3 R 2
Byir _ pvli’/pb _ (Rm‘”> (t"”> (1.105)

- 1
5rurn prurn/pbum Rvir Lnax
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and so at the virialization i.e., t,;y = 2tqx, We get

% ~ 1.68: for linear

Oyir = (1.106)

32 [%} —1~a176; for nonlinear

1.5.4 The Press-Schechter formalism

The Press-Schechter formalism (Press & Schechter, 1974) models aspects of nonlinear gravitational
clustering semi-analytically. In the Press-Schechter formalism the fraction of mass F (M) in the
collapsed objects at any time ¢, which have mass greater than M, is identified with the fraction of
the initial volume for which the density contrast is greater than a critical value i.e., & > 0.. Here
the critical density contrast . is identified with the linearly extrapolated density contrast at time ¢,
needed for virialization in spherical collapse model i.e., 8. = 1.68, for Einstein-de Sitter model. The
main results of the Press-Schechter formalism can be derived in the following way.

If we consider that the initial density field is Gaussian, and smooth it over a scale r, using a
spherical-top hat window function W (x, r), then the probability of finding a spherical region with

density contrast in range [, + dJ] is given by

1 &2
P8, r) = ——— - 1.107
(8,7) 2m6(r) exp ( 262(1”)) ( )
where 5
20y [dkIEP(k)  (sinkr—krcoskr
o (r) = o ) (1.108)

In the Press-Schechter formalism the fraction of mass F(M) in the collapsed objects with mass

greater than M is identified with the fraction of the initial volume for which & > d..
52
F(M):/8 P(8,r)dd = / \/ZnT ( T )ds Ech\/_} (1.109)
Here Erfc(x) is the complimentary error function.
This formalism does not take into account the mass in the underdense regions, which also col-

lapses eventually. It underestimates the mass function F (M) by a factor of two which is corrected by

multiplying equation (1.109) by two.

2 [ e _ v
F(M):ﬁ/(sc/m[ dx = Erfc [0\/_} —Erfc<\/§> (1.110)
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where v = 8. /6. On the basis of equation (1.110) we can also compute the fraction of mass f(M)dM,

called the multiplicity function, in the objects which have mass in the range [M, M + dM].

F(M)dM = % - \/% (02&)) (0&14) acgg\zy)) exp (_2026§M)> aM (1.111)

f(M)dM = \/% '

and the comoving number density of objects N(M)dM in the mass range [M,M +dM)| is

or

vexp(—v?/2)dM (1.112)

dinc
am

Pb 2 pp |dlnoc 2
M)dM = — M)dM = | —— —v°/2)dM 1.11
WO =22 pyant = [ 20|02 o) (1113)
For a power law model i.e., P(k) o< AK"
M\ B dinc| (n+3)
2
M) = = 1.114
o (M) (an) ‘dlnM 6 (1.114)
and so
7('14’3) 7 3)/3
1 pb(n+3)(M)6 ag(M)<”+
N(M)dM = — exp | ——= dM 1.115
( ) vV 27'CM2 3 My, P 2 \ My ( )

1.6 Cosmological N-body simulations

In the case when there are no analytic methods available for modeling nonlinear gravitational clus-
tering, numerical methods or cosmological N-body simulations are the main tools (Efstathiou et al.,
1985; Sellwood, 1987; Hockney & Estwood, 1988; Bagla & Padmanabhan, 1997a; Bertschinger,
1998; Aarseth, 2003; Bagla, 2005; Dolag et al., 2008). In cosmological N-body simulations the
gravitating matter is considered in the form of discrete particles and the trajectories of particles are
integrated in an expanding background. The gravitational force at small scales is softened in order
to avoid collisions as each N-body particle represents a large number of particles in the universe.
The value of the softening scale (€) and type of softening is decided on the basis of the model under
consideration and the level of accuracy needed. At every time step the gravitational force acting on

particles is computed and the positions and velocities of particles are updated self consistently. In
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order to represent the physical problem faithfully a large number of particles are considered which
makes force computation very expensive i.e., it grows as O(N?).

In oder to get around the problem of force computation many techniques have been developed in
which the force is approximated, at all scales or at some scales, at the cost of computational speed.
In one of these techniques called the Particle Mesh method (PM) an artificial mesh is constructed
in the simulation volume and physical quantities are extrapolated back and forth at the grid or mesh
points using some extrapolation function (Bouchet & Kandrup, 1985; Efstathiou et al., 1985; Bagla
& Padmanabhan, 1997a). The force is computed in Fourier space using Fast Fourier Transformation
(FFT) which makes it computationally inexpensive 1.e., the computational cost of force calculation
grows as O(NlogN) in place of O(N?). In PM method, the force at small scales is not calculated
accurately and for better accuracy either the force computation is done directly or the mesh is refined.
One of the very useful feature of this method is that periodic boundary conditions are incorporated
automatically which makes this method suitable for cosmological simulations.

In another popular method called the Tree method (Barnes & Hut, 1986; Barnes & Hut, 1989;
Bouchet & Hernquist, 1988) particles in cosmological simulations are assumed to be distributed in
the form of a tree like hierarchy of cells. The largest or the root cell contains all particles and the
smallest cell contains just one particle. In order to compute the force acting on a particle, a bunch
of particles in a cell of size D at a distance d is represented by a single particle at the center of the
mass of the cell if D/d < 6. Here 0 is an arbitrary parameter which is optimized for the model being
simulated. In this case also the cost of force calculation grows as O(NlogN) in place of O(N?). This
method is accurate at small scales but it is slow; a method has been proposed called the TreePM
method in which the force computation at large scales is done using the particle mesh techniques

(Bagla, 2002; Bagla & Ray, 2003).






Chapter 2

Role of substructure- I: Planar collapse

2.1 Introduction

The cold dark matter (CDM) models of structure formation in the universe have been quite suc-
cessful in explaining the features of matter distribution in observations and cosmological N-body
simulations. Structure formation in a cold dark matter dominated universe takes place hierarchically
1.e., structures at small scales form first and merge together and/or accrete matter from their sur-
rounding and lead to structure formation at larger scales (Blumenthal et al., 1984; Davis et al., 1985;
White & Frenk, 1991; Padmanabhan, 1993; Bernardeau et al., 2002). In this situation it becomes
an interesting issue to investigate the effects of small scale perturbations or substructure on larger
scales. This is one of the core issues of this thesis. In the present and the next chapter we will present
the results of our studies of mode coupling in gravitational clustering. Our main focus will be on
the effects of small scale perturbations on collapse of perturbations at large scales in cosmological
N-body simulations. The main results outlined in this chapter have been published in Bagla, Prasad
& Ray (2005).

In order to model structure formation in the universe the dynamics of perturbations at various
scales have to be understood. It has been found that as long as the amplitude of density perturbations
at any scale is small (0 < 1), its growth can be studied using linear perturbation theory. However,

once it becomes large (0 ~ 1) linear perturbation theory no longer remains valid since perturbations

25
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at different scales start to couple with each other (mode coupling) and the system becomes nonlinear.
Several studies have concluded that at the level of the second moment of density contrast (power
spectrum, two point correlation function etc.) there are significant effects of perturbations at large

scales on small scales but not vice versa.

On the basis of a set of numerical experiments Little, Weinberg & Park (Little, Weinberg & Park,
1991) showed that the appearance of nonlinear structures mainly depends on the initial power over a
narrow range of wavenumbers around the scale of nonlinearity. In their numerical experiments they
truncate or replace power at small scales by a different realization of a Gaussian random field and
observe the effects of truncation or replacement of power on nonlinear structures. They argued that
since power at k < k,;; (k,; is scale of nonlinearity) is always small and the growth of power at k > k,;;
is mainly governed by nonlinear evolution, therefore the appearance of nonlinear structures at any

epoch is mainly governed by the power at the scale which is becoming nonlinear at that epoch.

In order to understand the significance of perturbations at various scales in gravitational cluster-
ing, Klypin & Melott (Klypin & Melott, 1992) proposed a measure called the Kinetic energy Ratio
(KR) which depends on the power in a narrow range of scales. They pointed out that the shape of
nonlinear structures at any scale does not depend on the power at much smaller scales which have
already collapsed, and the power at much larger scales which mainly provides coherent motions.
On the basis of a set of cosmological N-body simulations for power law models (n = 1,—1, —=3),
they found that in a highly nonlinear regime KR has a tendency of approaching a constant value i.e.,

n—=-—1.

Bagla & Padmanabhan (Bagla & Padmanabhan, 1997a) showed that in nonlinear gravitational
clustering the transfer of power is mostly from large to small scales. On the basis of a set of numerical
experiments, in which they either suppress or enhance initial power at small scales, they showed that
due to flow of power during nonlinear evolution, the index of power spectrum at small scales moves
asymptotically towards n = —1. They showed that this result agrees with the earlier studies (Klypin
& Melott, 1992) and remains valid even when extra power is added at small scales. They also showed
that nonlinear evolution leads to transfer of power from small to large scales also by forming a k*

tail in power spectrum. This is significant only if the initial power spectrum is steeper than k* which
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rarely happens (Peebles, 1974; Peebles, 1980; Zeldovich, 1965).

In order to understand the effects of small scale structures on the collapse of large scale perturba-
tions, Evrard & Crone (Evrard & Crone, 1992) carried out a set of numerical experiments and found
that the collapse of large scale perturbations is insensitive to the presence of structures at small scales.
This result was contrary to the “previrilization” hypothesis of Peebles (Davis & Peebles, 1977; Pee-
bles, 1990) which says that non-radial motion due to substructure can retard the gravitational collapse
of large scale perturbations. Evrard & Crone argued that non-radial motions and delayed collapse
in Peebles’s finding came about due to external torques from the inhomogeneous surrounding, not
from substructure within the test cluster itself. The priviralization hypothesis predicts that the critical

density contrast for spherical collapse at least a factor of five larger than what is general considered.

In the violent-relaxation framework of Lynden-Bell (Lynden-Bell, 1967) the presence of sub-
structure can lead coarse grain phase space density towards an equilibrium value without disturbing
the fine grain phase space density i.e., mixing in phase space. Weinberg (Weinberg, 2001) also
pointed out that substructure can play an important role in the evolution of a system of collisionless
particles in phase space. The presence of substructure in the surroundings of a collapsing structure
can lead to very strong non-radial motion inside it and can slow down its collapse (Peebles, 1990).
Transverse motions can lead to a change in the density profiles of haloes (Peebles, 1990; Subrama-
nian, 2000). Gravitational interaction between small clumps can bring in an effective collisionality
even for a collisionless fluid (Ma & Bertschinger, 2004; Ma & Boylan-Kolchin, 2004). Thus it is
important to understand the role played by substructure in gravitational collapse and relaxation in the
context of an expanding background. In particular, we would like to know if this leaves an imprint
on the non-linear evolution of the correlation function. The effect of substructure on collapse and

relaxation of larger scales is another manifestation of mode coupling.

We study the interplay of clumping at small scales with the collapse and relaxation of perturba-
tions at much large scales. In the present study we show that perturbations at small scales can affect
collapse of large scale perturbations, particularly when these are highly symmetric. We model large
scale perturbations in the form of a plane wave. We find that dynamical relaxation of the plane wave

is faster in the presence of substructure. Scattering of substructures and the resulting enhancement of
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transverse motions of haloes in the multistream region leads to a thinner pancake. In turn, collapse
of the plane wave leads to formation of more massive haloes as compared to the collapse of substruc-
ture in the absence of the plane wave. The formation of more massive haloes happens without any
significant increase in the total mass in the collapsed haloes. In one of the numerical experiments
in this study we use the Burger’s equation to model the collapse and find that the preferred value of
viscosity in the framework of the Adhesion model (Gurbatov et al., 1989) depends primarily on the
number of streams in a region.

The plan of the chapter is as follows. In §2.2 we give the basic equations for the dynamics of
gravitational clustering in an expanding universe. In section §2.3 we discuss some toy models which
we simulated for our study. We discuss the results of our study in section §2.4 and give the main

conclusions in section §2.5.

2.2 Gravitational clustering

2.2.1 Dynamics of gravitational clustering

In an expanding background the amplitude of density perturbations dx can be evolved using the

following nonlinear equation

2 T2 > 3 TAK— Bk (2.1)

A8 | ,add _ <3Hg§zm> Sk
where A and By are given by equation (1.43) and (1.44) respectively.

As has been discussed earlier (see §1.3.2), the above equation is a non-linear second order partial
differential equation which can be solved only in situations when either the nonlinear coupling terms
Ak and By are zero or Ax — Bk = 0. It can be shown that the individual virialized objects that satisfy
the condition 27 + U = 0, where T and U are the kinetic and potential energy respectively, do not
make any contribution towards the growth of perturbations through mode coupling (Peebles, 1974)
at much larger scales, i.e. the leading contribution to Ak — By vanishes as |k| — 0. The contribution

of mode coupling due to interaction of such objects is not known.

Approximate approaches to structure formation can be developed by ignoring the interaction of
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well-separated scales. The evolution of density perturbations can be modeled as a combination of
non-linear collapse at small scales, and the collapsed objects can be displaced using quasi-linear ap-
proximations (Bond & Mayers, 1996; Monaco et al., 2002a; Taffoni, Monaco and Theuns, 2002).
These approaches yield an acceptable description of properties of collapsed objects and their distri-
bution for a first estimate. PINICCHIO (Monaco et al., 2002a; Taffoni, Monaco and Theuns, 2002)
provides sufficient information about halo properties and merger trees for use with semi-analytic
models of galaxy formation. The efficacy of these models puts an upper bound on the effects of

mode coupling that we are studying here.

2.3 Numerical Experiments

In order to investigate the effects of small scale perturbations or substructure on perturbations at large
scales we carried out a set of numerical experiments using cosmological N-body simulations. In these
experiments we considered perturbations at two widely separated scales i.e., the large scales and the
small scales, in an Einstein-de Sitter background. Since the local geometry of collapse at the time
of initial shell crossing is planar in nature (Zeldovich, 1970), we modeled large scale perturbations
in the form of a single plane wave. This allows us to study the interaction of well-separated scales

without resorting to statistical estimators like the power spectrum and two point correlation function.

2.3.1 The initial power spectrum

For our numerical experiments we considered an initial power spectrum which has nonzero power
only at two widely separated scales i.e., small scales and large scales. Perturbations at large scales
(A;) were considered in the form of a plane wave with k =k 7, where K is the fundamental wavenum-

ber of the simulation box.

A, fork=ksZ;

A7 (k) =
0, for all other k

Here A2(k) is the power per logarithmic interval in k
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Perturbations at small scales were considered to be constant across a narrow range of wavenum-

bers ko &= 0k and zero outside of this window

5 oA, for kg — Ok < |k| < ko + Ok;
K2 (H) -

0, for other values of k
For small scale perturbations we used a Gaussian random realization of the power spectrum Ag.
We considered four values of ot i.e., 0.5,1.0,2.0 and 4.0 (see Table 2.1), and normalize the amplitude

of large scale perturbations A such that shell crossing takes place at epoch a = 1.

2.3.2 Codes and models

We used a Particle-Mesh (PM) (Bagla & Padmanabhan, 1997a) code and a TreePM code (Bagla,
2002; Bagla & Ray, 2003) for our simulations. The TreePM code uses a spline softening with
softening length equal to the length of a grid cell in order to ensure collisionless evolution. All the
simulations were carried out with 128> particles (see Table 2.1). We considered two type of initial
distributions of particles named grid and perturbed grid. In the Grid distribution case particles are
located at the grid points before being displaced to set up the initial condition and in the Perturbed
grid case particles are randomly displaced from the grid points (Bagla & Padmanabhan, 1997a); this
displacement has a maximum amplitude of 0.05 grid lengths. Such an initial condition is needed to
prevent particles from reaching the same position in the plane wave collapse case as such a situation
is pathological for Tree codes. We checked that these small displacements do not affect the initial
conditions to be realized by comparing the results of the simulation PM_OOL and T_OOL (see Table 2.1
for detail).

The simulations T_10P and T_40P are identical to the simulations T_10L and T_40L except that
the small-scale fluctuations are restricted to the direction orthogonal to the direction of the plane
wave. These simulations are useful for differentiating between competing explanations for the results
outlined below.

We expect that bound substructure can be torn apart due to interaction with rapidly in-falling

matter. On the other hand, a higher average density in the multistream region can lead to rapid
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Name Method o Plane wave | IC

PM_00OL PM 0.0 Yes Grid

T_O00L TreePM 0.0 Yes Perturbed grid
T_05L TreePM 0.5 Yes Grid

T_10L TreePM 1.0 Yes Grid

T_20L TreePM 2.0 Yes Grid

T_40L TreePM 4.0 Yes Grid

T_10P TreePM 1.0 Yes Perturbed grid
T_ 40P TreePM 4.0 Yes Perturbed grid
T_05 TreePM 0.5 No Grid

T_10 TreePM 1.0 No Grid

T_20 TreePM 2.0 No Grid

T 40 TreePM 4.0 No Grid

Table 2.1: This table lists parameters of N-Body simulations we have used. All the simulations used 1283

particles. The first column lists name of the simulation, second column lists the code that was used for running

the simulation, third column gives the relative amplitude of small scale power and the plane wave, the fourth

column tells us whether the large scale plane wave was present in the simulation or not, and the last column

lists the distribution of particles before these are displaced using a realization of the power spectrum. Grid

distribution means that particles started from grid points. Perturbed grid refers to a distribution where particles

are randomly displaced from the grid points, this displacement has a maximum amplitude of 0.05 grid points.
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growth of perturbations. It is well known that pancakes are unstable to fragmentation due to growth of
perturbations (Valinia et al., 1997). The velocity field is anisotropic due to infall along one direction.
Hence the rate at which perturbations grow will also exhibit anisotropies. Velocity dispersion along
the direction of plane wave collapse is larger than the transverse direction, hence the growth of

fluctuations in the transverse plane is expected to be more rapid.

If the in-falling material contains collapsed substructure, then gravitational interaction between
these can induce large transverse velocities. This takes away kinetic energy from the direction of

infall, which in turn can lead to a more fragmented and thiner multistream region.

2.4 Results

Gravitational collapse of the plane wave occurs along the z-direction and a two dimensional sheet
like structure or the pancake forms which contains multistream regions i.e., particles with different
velocities at the same spatial positions. In Figure 2.1 we show the positions and velocities of particles
along the z-direction for PM_00L model. This figures shows that the number of streams increase

when we approach towards the center of the pancake.

In order to check that the results of our simulations are independent from the code being used,
in Figure 2.2 we show the density profiles for simulations PM_OOL (solid line) and T_OOL (dashed
line) in the left and right panels at two epochs @ = 1 and a = 2 respectively. This figure shows that
the curves for the model PM_OOL and T_OOL closely follow one another as the density profiles are
almost identical when we use different codes. The small difference can be attributed to the different
initial conditions. We checked this assertion by running PM_0OL model with the perturbed grid
initial conditions. The TreePM method has a slightly better resolution but it does not induce any new
features. This is expected as the force softening length used in the TreePM simulations is one grid
length, the same as the interparticle separation, and it has been shown that such force softening does
not induce two-body collisions (Melott et al., 1997; Splinter et al., 1998). Apart from the pure plane

wave case we simulated all other models with the TreePM code.
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Figure 2.1: This figure shows velocities and positions of particles along the z-axis in the simulation of plane
wave collapse i.e., model PM_00L. Collapse of the plane wave leads to formation of multistream regions where
particles with different velocities can occupy the same spatial position. The number of streams in multistream

regions increases when we approach towards the center of the collapse.

2.4.1 Thickness of the pancake

We study the effects of substructure on the thickness of the pancake which forms when the plane
wave collapses. If the substructure does not play an important role in the evolution of large scale
perturbations then the thickness of the pancake should be independent of the presence of substructure.
On the other hand, if the substructure does indeed speed up the process of dynamical relaxation then
we should see some signature in terms of the thickness of the pancake, velocity structure, or both.
Any such effect will be apparent only at late times as infall of matter into the pancake dominates at

early times.
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Figure 2.2: The left and right panels in this figure show the average density p(z) as a function of z-coordinate
for model PM_0O0OL (solid-line) and T_O0OL (dashed-line) at two epochs a = 1 and a = 2 respectively. From this

figure we can see that the density profile does not change much when we use different codes.

In Figure 2.3 we show the slices parallel to x-z plane at a = 2 for simulations T_00L, T_10L and
T_40L. In this figure the amount of substructure increases from the left panel to the right and the
plane wave collapses along the vertical direction (z-axis). The boundary of the multistream region
is clearly visible in all the slices even though this region is fragmented in the last panel. From these

slices it is clearly visible that the pancake is thinner when there is more substructure.

We show a detailed comparison with a different level of substructure in Figure 2.4. In the left
panel of Figure 2.4 we show the averaged overdensity as a function of z-coordinate at a = 2 for
models T_O5L (dashed line), T_10L (dot-dashed line), T_20L (dotted line) and T_40L (dot-dot-dashed
line). We compute average overdensity by averaging over all x and y coordinates for a given interval
(z+ Az). This figure shows that the peak density at the center of the pancake is smaller when there is
more substructure. Apart from this, we also observe that the mass enclosed within a given distance
from the center of the pancake (defined here as the trough of the potential well of the plane wave) is

smaller for more substructure, even though the variation is very small at less than 10 per cent between
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Figure 2.3: The left, middle and right panels in this figure show the slices parallel to the x-z plane at a = 2
for simulation T_OOL, T_10L and T_40L respectively. Collapse of the plane wave along the vertical direction
(z-axis) leads to formation of the pancake. From this figure we can see that the thickness of the pancake

decreases when we increase the amount of substructure (when we go from left to right).

the extreme cases (see Figure 2.9).

In the middle and right panels of Figure 2.4 we show the rms transverse velocities of particles
and haloes as a function of the z-coordinate for the same models and epoch as in the left panel. From
the middle panel it is clear that the transverse motions are enhanced in the dense pancake region.
The amplitude of transverse motions is larger in simulations with more substructure. The size of the
region where these motions are significant varies with the amount of substructure as in the case of
overdensity (left panel). The rms transverse velocities do not go zero outside the pancake region,
instead these level off to a small residual value.

The transverse motions are due to motions of particles in clumps that constitute substructure, due
to infall of particles in these clumps, and transverse motions of clumps as they move toward each
other. In order to see these effects more clearly, we plot the rms velocities for haloes in the right
panel of Figure 2.4. We have identified haloes with the friends-of-friends (FOF) algorithm using a
linking length of [ = 0.2 grid length and have considered only those haloes for our analysis which
have at least 50 particles. Such a high cutoff for halo members is acceptable because typical haloes
have several hundred members. For simulations with a small amount of substructure, the motion of
clumps is subdominant and hence the transverse motions are contributed mostly by internal motion

and infall. In simulations with more substructure, motions of clumps contribute significantly to the
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Figure 2.4: The left panel in this figure shows the average overdensity as a function of z-coordinate at a = 2
for models T_OSL (dashed line), T_10L (dot-dashed line), T_20L (dotted line) and T_40L (dot-dot-dashed line).
The middle and the right panels show the rms transverse velocities of particles and haloes for the same models

at the same epoch as in the left panel.

rms transverse velocity. Gravitational attraction of clumps, particularly in close encounters in the
pancake region, induces the transverse component. Collisions are enhanced in the pancake regions
as the number density of clumps is higher.

In order to convince ourselves that transverse motions induced by scattering/collision of clumps
are the most likely reason for the reduced thickness of pancakes, we compare simulations T_10L
and T_40L with T_10P and T _40P. In simulations T_10P and T _40P, the small-scale fluctuations do
not have any z-dependence or they are anisotropic. In this case, in place of clumps in the in-falling
matter there are streams of particles so the scattering is suppressed in comparison to the case when
there are clumps i.e., when small scale perturbations are isotropic. Most collisions take place head-
on and grazing collisions are rare. Of course, in the simulation the presence of the plane wave leads
to breaking of these streams into clumps as the streams are stretched inhomogeneously in the z-
direction. These clumps are aligned parallel to the z-axis. In the pancake region scattering of these
streams occasionally leads to complex patterns. If the presence of substructure and its growth in the
pancake was the only cause for making the pancake thinner then the pancake in these simulations
should be thinner as well. In Figure 2.5 we show slices from simulations T_40L and T_40P for a = 2.

A slice from the simulation PM _0OL is also plotted here for reference. The visual comparison shows
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Figure 2.5: The left, middle and right panels in this figure show the slices parallel to the x-z plane at a = 2 for
simulations PM_0OOL, T_40P and T_40L respectively. This visual comparison shows that the pancake is thinner
in T_40L as compared to T_40P. Indeed, the thickness of pancake in T_40P and PM_OOL is very similar.

that the pancake is thinner in simulation T_40L in comparison to simulation PM_0OOL and T_40P. This
reinforces the point that scattering of clumps in the pancake region is the key reason for a thinner
pancake.

Figure 2.6 shows the slices parallel to the x-z plane for models T_O5L and T_05 at three epochs,
a=0.5,1.0 and 2.0. Identical slices for models T_205L and T_20 are shown in Figure 2.7. These
figures bring out the effect of the plane wave on the collapse of perturbations at small scales as well
as the influence of small-scale fluctuations on the thickness of the pancake formed by the collapse of

the plane wave.

2.4.2 Pancake and viscosity

In the present study we also use the Adhesion approximation (see §1.5.2) to model substructure in
the form of some artificial viscosity. In this case the equation of motion for particles is given by
the Burger equation (Gurbatov et al., 1989; Weinberg & Gunn, 1990; Shandarin & Zeldovich, 1989)
which can be solved analytically. For one dimensional motion this equation can be written as

du  du *u

Here u = dx/db is the velocity and b is the linear growth factor. This equation can be solved

(2.2)
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Figure 2.6: The first and second column in this figure show the slices parallel to the x-z plane for models

T_05L and T_05 at a = 0.5 (first row), a = 1.0 (second row) and a = 2.0 (third row) respectively.
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Figure 2.7: The first and second column in this figure show the slices parallel to the x-z plane for models

T_20L and T_20 at a = 0.5 (first row), a = 1.0 (second row) and a = 2.0 (third row) respectively.
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analytically by introducing a velocity potential u = dy/dx, where W coincides with the gravitational

potential at the initial time. The solution has the following form.

u=Vy=-2vVinU (2.3)

and,

12 % )2
U(x,b) = (ﬁ) / exp [—"’2(3) ! 4VZ) ]dq. (2.4)

—oo

Here ¢ and x are the Lagrangian and Eulerian coordinates respectively. In this method we inte-
grate the differential equation for particle trajectories. At each time step velocity is calculated by the
above procedure at grid points and interpolated to particle positions.

We have found in previous section that when the level of substructure increases the pancake
becomes thin since the substructure helps in the relaxation of the plane wave. This motivates us to
represent the effects of substructure in the form of an artificial viscosity which also helps to keep the
pancake thin.

We study the collapse of the plane wave in the framework of the Adhesion approximation (Gur-
batov et al., 1989) and quantify the effect of substructure and viscosity in terms of the mass M(z)

enclosed within a distance z from the center of pancake.

M(z) = /Z o dz'p(Z +zc) (2.5)

Here p(z) is the density at position z and zz is the center of the pancake. There is no ambiguity

for comparing the results with N-body simulations in case of no substructure as the density depends

only on z. While comparing other simulations with the adhesion solution, we consider the density

averaged over the x- and y-directions. The adhesion model is run only for the one-dimensional
problem.

The solid lines in the left, middle and right panels in Figure 2.8 show the enclosed mass M(z) for

PM _00L model at @ = 2,3 and 4 respectively. From this figure we notice that the slope of the curve

changes suddenly when the number of streams change i.e., when we move away from the center of

the collapse. In all the panels the dashed, dotted and dot-dashed lines show the mass enclosed in the

case of the adhesion model for v = 400, 600 and 900 respectively.
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Figure 2.8: This figure shows the mass M(z) enclosed within a distance z from the center of the collapse
for PM_OOL at three epochs a = 2 (left panel), a = 3 (middle panel) and a = 4 (right panel). The curves
for the Adhesion approximation with viscosity v = 400,600 and 900 are also shown by the dashed, dotted
and dot-dashed lines. This figure shows that the value of viscosity changes when the number of streams are

changed.

We compare the models with various level of substructure with one-dimensional adhesion model
in Figure 2.9. We plot the mass enclosed M(z) for models PM_00L, T_10L, T_40L and adhesion
model with v =600 at a = 2,3 and 4 in the left, middle and the right panel respectively. Addition
of substructure clearly changes the character of the problem and the collapse no longer remains one
dimensional. However, the scale of the substructure is so small compared to the wavelength of the
plane wave that the large scale collapse is still very close to planar. Here the motivation behind the
comparison of models with various level of substructure with one-dimensional adhesion model is
to see the effect of substructure on the favored value of effective viscosity. Substructure removes
the sharp change in density at the boundaries of 3-stream, 5-stream and 7-stream regions and the
curves for T_10L and T_40L are smoother in the pancake region. The finite viscosity curve matches
simulations with substructure over a wider range of scales than with PM_0OL. There are no other

noteworthy differences.
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Figure 2.9: This figure shows the mass M(z) enclosed within a distance z from the center of the multistream
region for PM_OOL (solid line), T_10L (dashed line), T_40L (dot-dashed line) and one-dimensional adhesion

model with v =600 at a = 2 (left panel), a = 3 (middle panel) and at a = 5 (right panel).

2.4.3 Mass function

The total mass in collapsed objects or mass function F (M) is one of the important measures in
gravitational clustering of matter. In Figure 2.10 we compare the mass function F (M) for models
with various level of substructure in the presence (thick lines) and absence (thin lines) of the plane
wave. The curves for o = 0.5,1.0,2.0 and 4.0 are represented by the solid, dashed, dotted and dot-
dashed lines respectively. We use the FOF algorithm with linking length 0.2 for identifying the haloes
and do not consider haloes with less than 50 particles for our analysis. The formation of collapsed
objects mainly happens due to initial density fluctuations at small scales, with some modulation by

the collapse of the plane wave.

We have observed that the plane wave pulls most of the matter toward the center of potential well
(pancake) and a relatively small fraction of matter remains under-dense regions. The growth of small
scale perturbations is greatly enhanced in the pancake region and suppressed in under-dense regions
(see Figure 2.6 and Figure 2.7). At late epochs merging of haloes lead to more massive clumps.
In under-dense regions smaller clumps have mass around the scale corresponding to the collapse of

small scale perturbations. The two mass scales are clearly visible in Figure 2.10.
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Figure 2.10: This figure shows the mass function F (M) at three epochs a = 0.5 (left panel), @ = 1.0 (middle
panel) and a = 1.0 (right panel) for model with various levels of substructure i.e., & = 0.5 (solid line), &« = 1.0
(dashed line), o = 2.0 (dotted line) and o = 4.0 (dot-dashed line). The models with and without the plane
wave are represented by thick and thin lines respectively. This figure shows that in the presence of the plane
wave the number density of massive haloes increases. However, the total mass in the collapsed objects remains

almost the same.

2.5 Conclusions

In the present study we have addressed the issue of mode coupling in nonlinear gravitational cluster-
ing. In particular, we focused our attention on the effects of small scale perturbations or substructure
on large scales. We tried to understand the effects of substructure on the collapse of large scale per-
turbations in cosmological N-body simulations. For our models we considered perturbations at two
widely separated scales and have considered the large scale perturbations in the form of a plane wave.
The simple form of the large scale perturbations allows us to use simple measures of clustering like
the thickness of the pancake and the mass enclosed within a given distance for our analysis in place
of statistical measures like correlation functions and moments of counts. Apart from the effects of
substructure on the collapse of the plane wave, we also tried to understand the role of substructure in
the framework of the Adhesion approximation.

The main conclusions of our present study are as follows:

e The thickness of the pancake which forms due to collapse of the plane wave is smaller when
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there is more substructure.

e The collisions between clumps lead to enhancement of the transverse velocities of particles

and haloes.

e We have found that the thickness of the pancake is not small in the models in which collisions

in substructure are suppressed by considering anisotropic small scale perturbations.

e We conclude that the collisions induce enhancement of transverse motions which takes away

momentum from the direction of infall and leads to thinner pancakes.

e The presence of large scale perturbations or plane wave shifts the mass function towards larger

masses. However, there is no significant change in the total mass in the collapsed haloes.

e In the adhesion model we found that for a given mass M(z) enclosed within a given distance z

we can find a single value of viscosity v for a multistream region with given number of streams.

In the present study we found that there are significant effects of small scale perturbations on
large scales i.e., substructure helps in the relaxation of the large scale perturbations when it is highly
symmetric. In the next chapter we will discuss the effects of small scale perturbations on the collapse

of large scale perturbations for generic models.



Chapter 3

Role of substructure- II; Hierarchical Models

3.1 Introduction

In Chapter 2 we showed that there are significant effects of perturbations at small scales or substruc-
ture on the collapse of perturbations at large scales when they are symmetric. We found that the
thickness of the pancake which forms due to collapse of a plane wave is small when there is sub-
structure in comparison with the case when substructure is absent. We concluded that in the presence
of substructure, scattering of haloes in falling towards the pancake i.e., center of the potential well,

transfers momentum along transverse directions and it leads to a thinner pancake.

In the present chapter we study the interplay of clumping at small scales with the collapse of
perturbations at larger scales using cosmological N-body simulations. We quantify the effects of
collapsed haloes on perturbations at larger scales using two point correlation function, moments of
counts in cells and mass function. The purpose of this study is two fold and the primary aim is to
quantify the role played by collapsed low mass haloes in the evolution of perturbations at large scales,
this is in view of the visible effect we discussed in Chapter 2 when the large scale perturbations are
highly symmetric. Another reason for this study is to ask whether features or a cutoff in the initial
power spectrum can be detected using measures of clustering at scales that are already nonlinear.
The final aim of this study is to understand the effects of ignoring perturbations at scales smaller than

the resolution of cosmological N-body simulation.
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It is well known that in nonlinear gravitational clustering in an expanding universe, perturbations
at small scales do not influence collapse of large scale perturbations in a significant manner (Peebles,
1974; Little, Weinberg & Park, 1991; Bagla & Padmanabhan, 1997b; Couchman & Peebles, 1998) as
far as the correlation function or power spectrum at large scales are concerned. This has led to a belief
that ignoring perturbations at scales much smaller than the scales of interest does not affect results
of cosmological N-body simulations. In one of our studies we found that if large scale collapse is
highly symmetric then presence of perturbations at much smaller scales affect evolution of density
perturbations at large scales (Bagla, Prasad & Ray, 2005).

The effect of substructure on the growth of perturbations at large scales depends on the sig-
nificance of mode coupling between different scales. Key results about the mode coupling are as

follows:

o If the initial conditions are modified by filtering out perturbations at small scales then mode
coupling generates power at small scales. If the scale of filtration is smaller than the scale of
nonlinearity at the final epoch then the nonlinear power spectrum as well as the appearance
of large scale structure is similar to the original case (Peebles, 1985; Little, Weinberg & Park,

1991; Bagla & Padmanabhan, 1997b; Couchman & Peebles, 1998).

e Nonlinear evolution drives every model towards a weak attractor (P(k) ~ k') in the mildly

nonlinear regime (1 < E < 200) (Klypin & Melott, 1992; Bagla & Padmanabhan, 1997b).

e I[n absence of initial perturbations at large scales, mode coupling generates power with (P(k) ~
k*) that grows very rapidly at early times (Bagla & Padmanabhan, 1997b). There are a number
of explanations for this feature, ranging from second order perturbation theory to momentum
and mass conserving motion of a group of particles. The k* tail can also be derived from the

full nonlinear equation for density (Peebles, 1974; Zeldovich, 1965).

e If we consider large scale perturbations to be highly symmetric i.e., planar, then small scale
fluctuations play a very important role in the realaxation of nonlinear perturbations at large

scales (Bagla, Prasad & Ray, 2005).
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While the effect of large scales on small scales is known to be significant, particularly if the larger
scales are comparable to the scale of nonlinearity, the effects of small scales on larger scales is known
to be small in most situations, Even though this effect has not been studied in detail, many tools have
been developed that exploit the presumed smallness of the influence of small scales on large scales
(Bond & Mayers, 1996; Monaco et al., 2002a; Monaco et al., 2002b).

Gravitational clustering in N-body simulations start with a “quasi-uniform” distribution of parti-
cles and has perturbations at all scales starting from the mass scale of particles. It has been argued
that such a system never reaches equilibrium. However, as the system evolves, larger and larger
scales become nonlinear and the system shows scaling behaviour. This scaling behaviour is mani-
fested only for a restricted class of initial conditions in an Einstein-de Sitter universe (Baertschiger et
al., 2007a; Baertschiger et al., 2007b; Baertschiger et al., 2007¢). Therefore it becomes an important
issue to understand the effects of “pre-initial conditions” in nonlinear gravitational clustering. In
general, pre-initial conditions are defined by the distribution of particles on which the initial density
and velocity perturbations are imprinted. The pre-initial conditions are expected to have no density
perturbations or symmetry, but it can be shown that at least one of these requirements must be re-
laxed in practice. This can lead to growth of some modes in a manner different from that expected in
the cosmological perturbation theory. The present work allows us to understand the effects that may
arise if the primordial power spectrum deviates strongly from a power law at small scales.

In order to understand the role played by substructure in the collapse of perturbations at large
scales, in this chapter we study the evolution of three models in cosmological N-body simulations.
The plan of this chapter is as follows. In §3.2 we discuss our models and various parameters we used.
In §3.3 we present the results of our study and and in §3.4 we discuss these. In §3.5 we summarize

our main results.

3.2 The models

In Chapter 2 we considered perturbation at large scales in the form of a plane wave in N-body
simulations. In the present study we consider a more general form of the the initial power spectrum.

We consider a power law spectrum with index —1 for our reference model (Model I). Apart from
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the reference model or Model I, we also consider two other models Model Il and Model 111 in which
we suppress and add power at small scales respectively. Some of the details of our cosmological

simulations are as follows.

o All the cosmological simulations were carried out with the TreePM code (Bagla, 2002; Bagla

& Ray, 2003).
e We used 2003 particles in a volume of 2003 cubic cells for each simulation.
e In order to avoid collisions we softened gravitational force at the scale of 0.5 grid length.

e For the reference model (Model T), we considered power spectrum P(k) = AK ! where A is

normalized such that 6> (r = 12 grid lengths,a = 1) = 1.
e We studied these models in the Einstein-de Sitter universe

e Model II: In this model power at small scales is truncated using a Gaussian cutoff.
P(k) = Ak exp [-k*/K2].
We chose k. = kyyq /4, so that truncation is mainly at scales that are smaller than the scale of

non-linearity at late times. A is chosen to be the same as for Model 1.

e Model III: We add a Gaussian spike in this model.
P(k) = Ak ' +o Ak Lexp|— (k—k.)* /207
We chose same k. as in Model 11, 6 = 27/ Ly,, is same as the fundamental wave number and

we took 0. = 4. A is chosen to be the same as for Model L.

Clearly, the Model II and Model III have truncated and additional power respectively at small
scales as compared to the reference model or Model I while the power at large scales is the same
for all the three models. The left and right panels in Figure 3.1 show the linearly extrapolated power
spectrum A?(k) at the initial epoch in N-body simulations and the theoretical mass variance 62(r)
respectively for the three models being considered. From both the panels of Figure 3.1 we see that
all the three models have identical power at the scales much larger than the scale at which we add or

suppress the power i.e., 21t/k.
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Figure 3.1: The left and right panels in this figure show the linearly extrapolated power spectrum AZ(k) and
variance 6% (r) at the epoch a = 1. In both the panels models I, I and III are represented by the solid, dashed

and dot-dashed lines respectively.

3.3 Results

In the present study our main goal is to understand the effects of variation in the initial power spec-
trum at small scales. For this we study the three models at two representative epochs: one where the
scale of modification is linear, and the second epoch when the scale of nonlinearity is larger than the
scales where the power spectra differ from each other. We refer to these epochs as an early epoch
and a late epoch. The scale of nonlinearity in the reference model i.e., Model I at the early epoch is
4.8 grid lengths and the corresponding scale at the late epoch is 12 grid lengths. The wave number

k. corresponds to 8 grid lengths and become nonlinear at an intermediate epoch.

We compare the gravitational collapse of perturbations in the three models being considered vi-
sually and using the amplitude of clustering , Skewness and comoving number density of haloes. We
expect that the features i.e., cutoff and peak, in the initial power spectrum will leave their signature

in these statistical indicators at late epoch.

In Figure 3.2 we show the distribution of particles in a thin slice from simulations of the three
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models. The left column shows the distribution at an early epoch wheras the right column shows
the same slice at late times. The top, middle and bottom row represent the Model II, I and III
respectively. From this figure we see that the large scale distribution of particles is similar in all the
three models for both epochs, although there are significant differences at small scales. Differences
are more visible between Model Il and other models, whereas the differences between Model | and
Model III are less obvious. Also, differences between the models diminish as we go from the early

epoch to the late epoch.

In Figure 3.3 we compare the clustering of matter in Model I, II and III in a more quantitative
manner. In the first row of Figure 3.3 we plot the amplitude of clustering E(r) as a function of r
for the three models at an early epoch (top-left frame) and at a late epoch (top-right frame). From
these figures we see that the differences between the amplitude of clustering are more pronounced
at the early epoch, though even here the differences are much smaller than those seen in Figure 3.1
where the linearly extrapolated 62(r) has been plotted. At late times, models I and III have an
indistinguishable E(r) whereas Model II has a slightly smaller amplitude of clustering at small scales
when compared to other two models. It is also clear from this figure that at very large r compared to

the scale of modification, all models have the same & even at the early epoch.

In the second row of Figure 3.3 Skewness S3 as a function of scale r has been plotted for the
three models at an early epoch (left column) and a later epoch (right column). From this we observe
that at large scales, larger than the scale of modification (8 grid lengths), the three models agree well
although there are significant differences at small scales, particularly at the early epoch. Model II has
the highest Skewness, whereas Model III has the smallest Skewness at small scales: this is expected
due to change in the local slope of 67 introduced by features in the initial power spectrum. This
ranking does not change with time, though the differences between models decrease with further

evolution of the system.

The bottom row in Figure 3.3 shows the number density of haloes N(M)dM as a function of mass.
Mass is in units of mass of each particle. Haloes were identified using the Friends-of-Friends algo-
rithm (FOF) with a linking length of 0.1. We chose this linking length in order to avoid identifying

smooth filaments in Model II as haloes. Haloes with a minimum of 20 particles were considered for
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Figure 3.2: The first, second and third row in this figure show the slices for Model II, T and III respectively,
at an early (first column) and a later epoch (second column). The early epoch is identified with an epoch when
the scale at which we add or truncate power i.e., 21t/k., is linear in the Model T and and the later epoch is

identified with an epoch when the scale 21t/k, is nonlinear in Model II.
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Figure 3.3: The first, second and third row in this figure show the average two point correlation function E ,
Skewness S3 and comoving number density of haloes N(M)dM respectively, at an early (first column) and at
a later epoch (second colum). Different models in all the panels are represented by the same line styles as in

Figure 3.1.
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this plot. We find that Model III has the largest number of haloes around the scale of modification,
whereas Model Il has the least number of haloes at this scale. Indeed, at the early epoch, Model 11
has a much smaller number of haloes at all mass scales when compared with Model I and Model I11.
At late times, Model Il continues to have fewer small mass haloes though it almost matches the other
two models at larger masses.

We find that the two point correlation function does not retain any information about differences
in initial conditions after the scale where such differences are present becomes sufficiently nonlinear.
This is in agreement with results of earlier studies (Peebles, 1985; Little, Weinberg & Park, 1991;
Klypin & Melott, 1992; Bagla & Padmanabhan, 1997b; Couchman & Peebles, 1998).

Skewness S3 is a slightly better indicator than the two point correlation function, in that it retains
some information about the missing power at small scales in Model II even after the cutoff scale
becomes nonlinear. It does not retain much information about the excess power that is added at
small scales in Model III. One possible reason for this is that the cutoff affects the shape of the
power spectrum at k << k. where the effects of adding extra power is more localized. We conclude
that Sz is able to retain information about the cutoff in the initial power spectrum if the cutoff scale
is not strongly nonlinear. This may not have implications for observational signatures of a cutoff
as observations of galaxy clustering are restricted to the redshift space and it has beens shown that
redshift space distortions in the nonlinear regime erase differences between S3 for different models
(Bagla & Ray, 2006).

The number density of haloes in Model II at scales comparable to and smaller than the cutoff is
smaller than that in Model I and III even after the cutoff scale becomes nonlinear. The mass function
appears to be most sensitive indicator of a cutoff in the power spectrum in the mildly nonlinear

regime.

3.4 Discussion

In the present study we have found that the memory of features in the initial conditions is erased
in the quasi-linear regime. This erasure is almost complete in measures of the second moment like

power spectrum and two point correlation function. This loss of information had been pointed out
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in earlier work also (Little, Weinberg & Park, 1991; Bagla & Padmanabhan, 1997b). The Skewness
appears to be a better indicator of a cutoff in the initial power spectrum, at least in the quasi linear
regime. We find that Skewness for Model 1II is distinctly higher for Model I or Model III, even
when the scale of nonlinearity is much larger than the cutoff scale. Number densities of haloes is a
very faithful indicator of the cutoff, even at late times. This is to be expected given that the number
density of haloes can be predicted fairly accurately using the Press-Schechter mass function (Press

& Schechter, 1974) that relies only on the initial power spectrum.

In order to interpret these results we would like to recall the key conclusions of our paper I in the
present series (Bagla, Prasad & Ray, 2005) (see Chapter 2). In paper I, we studied the collapse of
a plane wave with varying amount of collapsed haloes at much smaller scale (as compare to wave-
length of the plane wave). We found that the thickness of pancake that forms due to the collapse of
plane wave is smaller for models with larger amount of substructure. Our conclusion was that grav-
itational interaction of infalling clumps takes away some of the longitudinal momentum and leads
to an increase of the transverse momentum. Thinner pancakes imply a higher density, and clumps
are able to grow very rapidly in such environment. Our main motivation was to study collapse of
plane wave as it is known from the Zeldovich approximation (Zeldovich, 1970) that locally, generic

collapse is planar leading to formation of pancakes.

In case of generic initial conditions that we consider here, there is no fixed large scale that is
collapsing as we have perturbations at all scales. However, we have ensured that perturbations at
large scales are the same in all the three models. In this case the effect of power on large scales
is to cause collapse around peaks of density, or equivalently empty the voids. The latter picture is
more attractive as it also explains why collapse of perturbations at a scale leads to enhancement of
power at smaller scales without any loss of power at the original scale: emptying under dense regions
simply puts more and more matter in thin walls around the void that forms. We can say that power
is transferred from the scale of perturbation, that is essentially the radius of voids that form, to the
scale of thickness of pancake surrounding the void. As a given scale becomes nonlinear, we begin
to see voids corresponding to this scale. Matter that collapsed at an earlier stage gets pushed into

the pancake surrounding the void. The information about the shape of the initial power spectrum at
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scales smaller than the scale of nonlinearity is mostly restricted to the distribution of matter within
pancakes. This explains the erasure of memory of initial conditions for the two point correlation
function. The mass function and Skewness are more sensitive to the arrangement of matter within
pancakes and hence these remain different for the model with a cutoff. Once the scale of cutoff
becomes strongly nonlinear, most of the perturbations at this scale are expected to be part of highly
over dense haloes. At this stage, we expect that all indicators of clustering will loose information
about the details of the initial power spectrum at this stage.

In models I and III, there is significant amount of initial power at small scales. This leads to
a fragmented appearance of pancakes and clearly pancakes cannot be thinner than the clumps. In
Model II, there is no initial power at small scales. Power is generated at these scales by collapse of
larger modes, power grows very rapidly at small scales and the nonlinear power spectrum in this case
catches up with the power spectrum for the other two models.

Model III has significantly more power as compared with the reference model or Model I at
small scales. This leads to a more rapid growth of perturbations at these scales, as is seen in the
number density of collapsed haloes at the relevant scales at early times. At late times, these haloes
are assimilated into bigger haloes and we rapidly loose any signature of the excess power. We expect
the excess power to lead to thinner pancakes, motivated by conclusions of paper I. However, the scale

of pancakes is such that this feature is not apparent.

3.5 Summary

In the present study we have shown that for a hierarchical model, there is little effect of features in
the initial power spectrum on collapse of perturbations at large scales. We have also shown that the
effects of features can be seen in several statistical indicators like Skewness and number density at
the scales of features and also at smaller scales. The key conclusion which we can draw from the
present study is that if we modify the power spectrum at small scales, there is no discernable effect

of these modifications at larger scales. This can have implications in several situations:

e Cosmological N-Body simulations start with initial conditions that do not sample the power
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spectrum at large wave numbers i.e., scales smaller than the scale of resolution. In typical
simulations of this type, a grid is used to generate initial conditions and only modes up to
the Nyquist wave number are sampled. Indeed, if the number of particles is smaller than the
number of grid cells used for generating initial conditions, the effective upper limit to wave
numbers is even more restricted (Bagla & Padmanabhan, 1997a). The missing part of the
power spectrum does not have any impact on the evolution of nonlinear structures at scales
larger than the cutoff scale. We expect the effects of missing modes at large wave numbers to

be less and less relevant as larger length scales (smaller wave numbers) become non-linear.

It has been pointed out that the choice of pre-initial conditions, and the epoch at which the
initial conditions are set up can lead to spurious growth of some modes (Baertschiger et al.,
2007a; Baertschiger et al., 2007b; Baertschiger et al., 2007¢). Clearly, these effects must be

suppressed as the modes with spurious growth become nonlinear.

Generation of perturbations in the early universe, and their evolution towards the end of the
inflationary phase can lead to a scale dependent evolution of modes (Malquarti, Leach, & Lid-
dle, 2004; di Marco et al., 2007). Our work clearly shows that such features will be impossible
to detect if these are at scales that are strongly non-linear and difficult to detect if these are at
scales that are mildly nonlinear. If scales where such variations occur are already nonlinear
then these variations do no affect collapse of larger scales. Of course, if the scales where such

variations occur are linear then these can be probed using galaxy clustering.



Chapter 4

Finite volume effects -I: Mass function

4.1 Introduction

Cosmological N-body simulations play an important role in modeling nonlinear gravitational clus-
tering which leads to structure formation in the universe (for a brief introduction and references see
§1.6). However, they have their limitations due to the finite number of particles, volume, mass and
length resolutions. In cosmological N-body simulations matter is considered in the form of discrete
particles which interact with each other by a smoothed gravitational force in an expanding back-
ground. The mass and length resolutions of cosmological N-body simulations depend on the number
of particles used and the scale of force softening. In order to be realistic, the size of cosmological
N-body simulations has to be large enough to be a representative sample of the real universe; a fact

that allows us to use periodic boundary conditions.

In most cases the initial perturbations in cosmological N-body simulations are assumed to have
a Gaussian distribution and are represented by their power spectrum which is sampled at discrete
wavenumbers between the fundamental mode ky = 27/Ly,,, and the Nyquist wavenumber &y, =
Tt/ Lqyiq. This means that perturbations at scales smaller than two grid lengths and larger than the size
of the simulation box are ignored. In nonlinear gravitational clustering, perturbations at large scales
are expected to play an important role in the growth of perturbations at small scales and the limitation

due to the size of the simulation volume can be crucial. In the present chapter we develop a formalism
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for understanding the limitations due to the finite box size in cosmological N-body simulation and
use it to quantify corrections in the mass variance, two point correlation function, mass function
and multiplicity function. We will also discuss applications of our formalism for some cosmological
models. In the next chapter we will generalize our formalism and give analytical expressions for

corrections in halo formation and destruction rate.

Colombi et. al (Colombi, Bouchet & Schaeffer, 1994) showed that the high density tail of the
count probability distribution function (CPDF) is very sensitive to the size of the simulation box.
As the higher order correlation functions and moments of counts in cells are sensitive to the tail of
CPDYF, they are significantly affected by the size of the simulation box. Moreover, the scaling relation

i.e., &y o EN1 no longer remains valid.

Gelb & Bertschinger (Gelb & Bertschinger, 1994a; Gelb & Bertschinger, 1994b) showed that the
rms density fluctuations i.e., 6(r), are suppressed at all scales when the size of the simulation box is
reduced. They also showed that truncation of power spectrum at large scales due to the finite size of
the simulation box affects nonlinear pair velocities at small scales. On the basis of high resolution

two dimensional simulations,

Kauffmann and Melott (Kauffmann & Melott, 1992) found that the scaling relations (self similar
evolution also) become more accurate when the index of power spectrum increases i.e., n = 2 model
follows better scaling than » = 0. They argued that it is the absence of power at large scale due to the
size of the simulation box which deforms the scaling relations. They also showed that void spectrum

is affected by the size of the simulation box.

Bagla & Ray (Bagla & Ray, 2005) proposed that the convergence of cumulative mass function
F(M) can be used to estimate the effects of finite box size; the size of the simulation box can be
considered large enough, if F (M) does not change by a significant amount at the relevant scale when
the size of the simulation box is increased. They found that there are significant effects of the size of
the simulation box on mass function and two point correlation function i.e., these are underestimated

when the size of the simulation box is reduced.

Power & Knebe (Power & Knebe, 2006) estimated the effects of the size of the simulation box on

some integral properties of dark matter haloes i.e., concentration, spin parameter and triaxiality, and
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found that these properties significantly change for individual haloes but their statistical distribution

remains unaffected.

In order to take into account the modes which are larger than the size of the simulation box
an approach called the Mode Adding Procedure or MAP (Tormen & Bertschinger, 1996) has been
proposed. In this approach firstly power at scales around the mode k& = 0 is removed and then power
at these scales is added after the simulation has been run by hand using Zeldovich approximation.
This procedure works only when perturbations at the scales at which power is removed and added
are linear and do not couple with perturbations at other scales. The main motivation behind the
development of such a tool is to enhance the range of scales over which one can rely on cosmological
simulations. Such an approach ignores the coupling of large-scale modes with small-scale modes and
this again brings up the issue of what is a large enough scale for a given model such that the effects

of mode coupling can be ignored.

In the present study we generalize the approach suggested by Bagla & Ray (2005) and propose a
prescription for estimating corrections due to the size of the simulation box in cosmological N-body
simulations. We give analytical expressions for corrections in linearly evolved mass variance, two
point correlation function, mass function and multiplicity function. We apply our formalism to a few
cosmological models. We find that correction in mass function is maximum near the scale of non-
linearity. As a corollary we also show that the correction to the number density of haloes of a given
mass changes sign at this scale; the number density of low mass haloes is overestimated, whereas
the number density of more massive haloes is underestimated. We conclude that the overestimation
of density of low mass haloes is due to the lack of mergers that lead to formation of more massive
haloes. We show that the corrections are typically small if the scale of nonlinearity is much smaller
than the size of the simulation box. However, there are some cases in which the relative correction is
significant even though a simulation volume much larger than the scale of nonlinearity is used. The

main results of the present study have bee published in Bagla & Prasad (2006).

In §4.2 we give basic equations and describe our formalism to estimate corrections in physical
quantities due to the size of the simulation box in cosmological N-body simulations. In particular,

we give explicit expressions for corrections in rms density fluctuations (mass variance) ¢ and aver-
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age two point correlations. The main results of the present study are given in §4.3 in the form of
analytic expressions for corrections in the Press-Schechter mass function and multiplicity function.
We compare some of results with cosmological N-body simulations in §4.4 and summarize the main

results.

4.2 The formalism

The initial cosmological density perturbations are assumed to be Gaussian, which can be completely
characterized by their power spectrum. In cosmological N-body simulations the initial power spec-
trum is sampled at discrete points in k space in the interval k; < k < k. Here ky = 21/ Ly, and
knyq = T/Lgyia, are the fundamental and Nyquist wavenumbers respectively. Modes larger than the
size of simulation box i.e., k < k, are ignored and it is expected that they will not affect the evolution
of modes which have been sampled. In what follows we will show that this is not the case and present

a method for estimating the effects of modes k < ky on various physical quantities.

4.2.1 Clustering amplitude

We consider variance 62(r) defined by equation (1.61) as the reference quantity and compute the
correction in it due to the finite size of the simulation box. We use these to compute corrections in
other physical quantities like the mass function and multiplicity function. Note that in place of 62(r)
any other second moment of density contrast can be considered but there is one advantage with 62(r)
that it is always positive.

In an ideal case i.e., when the size of the simulation box is taken to be infinity we get

I P(k)
2m?

o’ (r) = / dk A?(kYW?(k,r) where A?(k)= (4.1)

k

Here we take W2 (k, r) to be the spherical top-hat window function given by equation (1.59).

Since in cosmological N-body simulations ks < k < kyy,, in place of equation (4.1) we get

knyq
(1, Lyor) = / “ %Az(k)Wz(k,r)m / CZCA OW2(k,r) = G3(F) — P Lpes)  (42)
kr Ky
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where
*dk
o3(r) = Z — A2 (k)W2(k,r) (4.3)
is the expected value 62 and
kf:Lm;C dk
OHrLoa) = [ AW k) 4.4)

is the correction term arising due to the finite size of the simulation box.

Note that in equation (4.3) we have used the fact that perturbations at scales smaller than the grid
size do not influence the growth of perturbations at large scales. This approximation is valid as long
as the scales of interest are larger than a few grid lengths.

In the approach which we have outlined above, 62 (r,Lpoy) in cosmological N-body simulations
is represented by a combination of G%(I”) i.e., when the size of the simulation box is infinity, and a
correction term G%(r, Lpoyx). From equation (4.4) we observe that the correction term G% is always
positive; 6> in cosmological N-body simulation is underestimated at all scales. For hierarchical
models i.e., d07(r, Lyoy)/dr < 0, the correction term 6% (r, Ly, ) increases or saturates to a constant
value as we approach small scales.

The correction term 0%(7’, Lpoy) can be expanded in a power series, if we assume that the scale of

interest is much smaller than the size of the simulation box i.e. r << Ly,

” o dk
G%(anox)—/ b

/L,m dk K3P(k) _ (sin(kr) —krcos(kr)\*
k 271',2 K3

Az(k)Wz(k r)

N /L;m dk I°P(k /Lm dk I P(k) N 34 e dk KT P(k)
bk 2n2 5 k 2m2 175 k& 2m2

=C| -G+ Gt +0(r%) (4.5)

Note that the above expansion is useful only if kK*P(k) goes to zero as we approach k = 0. Equa-
tion (4.5) shows that the leading correction C| is independent of scale. This means that due to finite
size of the simulation box errors are introduced at all scales. We consider the numerical values of C;
for estimating the scale below which ¢ can be approximated by a constant value. It can be noticed
that the modes closer to 27/ Ly,,, contribute more significantly to the integrals that give C; for most

models.
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Figure 4.1: The left panel in this figure shows the variation of the leading order correction C; with the
index of power spectrum # for different values of the size of the simulation box. The curves corresponding to
Lpox /a1 = 16,128 and 512 are represented by the dot-dashed, dashed and solid lines respectively. From this,
we notice that the correction term becomes more and more important as n approaches towards —3. The right
panel in this figure shows the variation of the size of the simulation box with the index of power spectrum for

different values of C; (0.01,0.03,0.1 from top to bottom)

For hierarchical clustering models, 6%(r) at large scales is small and so the magnitudes of G%(r)
and G%(V, Lpox) are very close to each other. However, when we approach small r, the correction
07 (r, Lpoy) becomes constant and for most models it is insignificant in comparison with 63(r). In
models where 67 (r) increases very slowly at small scales or saturates to a constant value, the correc-

tion term 0% can be significant at all scales. This can be seen from the expression for C; for power

law models i.e., P(k) = Ak". .
n+
The above equation shows that the correction term C; becomes more and more important as n — —3
or when the the power at large scales increases.

The left panel in Figure 4.1 shows the variation of the leading order correction C; with the index
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Figure 4.2: The left panel in this figure shows the contours of constant Cy /63 = 0.01,0.03,0.1 and 0.3 (from
top to bottom) and the right panel shows the variation of the scale of nonlinearity with redshift for the ACDM

model.

of power spectrum n for cosmological simulations with various box sizes. The curves corresponding
t0 Lpox /T = 16,128 and 512 are represented by the dot-dashed, dashed and solid lines respectively.
As o is unity at the scale of nonlinearity and C; is the first order correction, clearly we require
C1 < 1 in order to ignore the correction due to the finite size of the simulation box. For n = —1, if
we fix C; < 0.1 then we can use Ly, /r,;; > 16, but for a more negative value of n we require a larger
separation between the box size and the scale of nonlinearity. If we keep the same accuracy then we
need Ly, /ry = 128, and 512, for n = —2.3 and —2.5 respectively. As N-body simulations are most
useful for studying nonlinear evolution, even the largest simulations possible today are left with a
small range of scales over which 6y > 1, for n < —2.0. This shows the pitfalls of simulating models

with n &~ —3 over the entire range of scales.

We use C;/ 0(2) as a measure of correction due to finite box size. The left panel of Figure 4.2
shows the lines of constant Cy/ 0% in the Ly, — r plane for the ACDM model. Here we have chosen

n=1h=0.7,Qx =0.7,Q,, = 0.3 and 63 = 0.9 and ignored the effects of Baryons on the power
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Indicator Correction

E(r) C - %Czrz + %C3r4 + 0(r%)
&(r) Ci— %Czl’z + 25—4C3r4 —+ O(r6)

Table 4.1: This table lists corrections due to a finite box-size to indicators of clustering in the limit r < Lpy.

These expressions are equivalent to equation (4.6) and constants C; are the same as in that equation.

spectrum. The lines from top to bottom are for various values of C;/ 6(2) in increasing order i.e.,
0.01,0.03,0.1 and 0.3. From this figure we can observe that a box of size smaller than 0.5 Mpc
is precluded if we insist on C/ G% < 0.1, irrespective of the scale of interest. This implies that we
cannot expect to simulate scales smaller than about 0.5kpc in the ACDM model without considerable
improvement in the dynamic range of cosmological N-body simulations. As we are using linearly
evolved quantities for our argument, the comments on size are valid irrespective of the redshift up to
which the simulation is run. The contours do not change if we use 67 instead of Cy. The right panel
of Figure 4.2 shows the variation of the scale of nonlinearity with redshift for the ACDM model.

In the right panel of Figure 4.2 we show the variation of the size of the simulation box with the
index of power spectrum for a given correction i.e., Cy, in the mass variance. From this figure we
observe that the size of the simulation box increseas very rapidly when we approach towards n = —3
for a constant correction.

The formalism which we have given can be used to estimate corrections for other estimators of
clustering also. For reference, we give expressions equivalent to equation (4.6) for the correction in
the two point correlation function and € and the average two point correlation function & in table 4.1.

Note that for all the cases the first term is Cj.

4.3 Mass function

The mass function of collapsed objects in N-body simulation can be given by the Press-Schechter
formalism (Press & Schechter, 1974; Bond et al., 1991). Since the collapsed mass function F (M)

depends on the mass variance 62(M), we can use the correction in 62(M) to compute the correction
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in F(M). In what follows we give expressions for corrections in the Press-Schechter mass function
and multiplicity function. In order to see that the key features of the corrections are generic, we
also give an expression for the Sheth-Tormen mass function (Sheth & Tormen, 1999; Sheth, Mo &
Tormen, 2001)
In the Press-Schechter formalism (see §1.5.4) the fraction of mass in the collapsed objects which
have mass greater than M is given by
F(M) = Z/W;exp (—8—2) dd
6. aao(n) T\ 20%()

exp (—xz) dx = Erfc (L) 4.7)

2 {o's}
RV /ac/cw)ﬁ o(M)V2

4.3.1 Correction in mass function

The mass function F (M, Lp,,) which we expect in N-body simulations is given by

2
F(M: Lbox) -

ﬁ/ﬁ /o (M,L )ﬂeXp (_xz) dx = FO(M) —F (MaLbox) (48)
¢ sbbox

where
2 %]

VA S8, jom)3

1s the mass function in the case when the size of the simulation box is infinity and

(M) = exp (—xz) 4.9)

8¢/0(M Lpox)V2 )

Fi(M,Lpoy) = NG / 5 oo exp (—x) (4.10)
is the correction due to finite size of the simulation box. In this case also the corrections due to finite
box size always lead to an underestimate of the mass function i.e., F{(M,Lp,y) is always positive.
This has been pointed out in earlier studies (Bagla & Ray, 2005). Fi(M,Lp,,) is not a monotonic
function of M; it goes to zero at small as well as large M. At small scales i.e., M < M,,;, the limits of
the integral in equation (4.10) differ by a very small amount and the difference (66(5% / 2/\/50(3)) keeps
on decreasing as we go to smaller M while the integrand remains finite. Therefore we expect F] to
decrease at small M. At these scales, we can write an approximate expression for Fj(M):

8 of 82
Fi(M) ~ Tt p[ 02} . (4.11)

0
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This expression clearly shows that F] decreases as we go to small M; 6| goes over to the constant C
and og keeps increasing.

Atlarge M (M > M), both 6(M, Ly, ) and 6o(M) are small and the limits of the integral cover
the region where the integrand is very small. Thus we expect F}(M, Ly,,) to become smaller as we
go to larger M in this regime. At these scales, we also expect F and F; to become almost equal while
F(M,Ly,,) goes to zero faster than either term. As Fj (M, Ly,,) decreases at small as well as larger
scales, it must have a maxima at an intermediate scale. The scale at which the maxima occurs can be
solving equation

dF;
7 0 (4.12)
substituting the value of Fj (M, Ly,,) from equation (4.10)

dE(MiLpoy) _ 2 (& do) T &1 (& doo) [ &]J|_,
am i |\ vagram )P | T 2e2 V22 dm | P | Tac3 ||

after substituting 6> = 0(2) — G% and some simplification we get
dlogo? oo o2 8202 3 &
08 ; = ——g — ——; exp | — 12 | =>-5 (4.13)
dlogay o7 |00 o 2620 2 20

For Ly, > 1y, O1 1s very well approximated by the Taylor series equation (4.5) and around this scale
o1 is a very slowly varying function of scale. Thus Fi (M, Ly, ) has a maxima at 63 = 82 /3 ~ 1, if the
first term in equation (4.5) is a good approximation for 6 (see Figure 4.3). If scale dependent terms
in equation (4.5) are not ignorable then the maxima of F} (M, Ly,,) shifts to smaller scales (larger G)
in a manner that depends on the power spectrum P(k) and the size of the simulation box Ly,-
Figure 4.3 shows the Press-Schechter mass function F (M, Ly,, ) (solid line) for a power law model
with n = —2 and L,y /ry = 16. The curve for the mass function Fy(M) i.e., when the size of the
simulation box is infinity is also shown by the solid line for reference. Curves for the exact and
approximate corrections in mass function i.e., equation (4.10) and (4.11), are shown by the dot-
dashed and dotted lines respectively. The scale at which 6y = §,./+/3 is marked with a vertical dotted
line which is close to the maximum of Fj(M,Lp,y). The correction term Fj (M, Ly,,) is more than
10% of Fy(M) at this scale. This figure illustrates all the generic features of the corrections to mass

function that we have discussed above.
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Figure 4.3: This figures shows the exact mass function Fo(M) (solid line) and the mass function F (M, Lp,y)
(dashed line) which we expect in N-body simulation (dashed line) for a power law model (n = —2). The exact
and approximate corrections Fi (M, Ly,,) in mass function i.e., equation (4.10) and (4.11), are also shown by
the dot-dashed and dotted lines respectively. The scale where oy = 8, /+/3 is marked with a vertical dotted line

which coincides with the maximum of Fy (M, Ly, ).
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4.3.2 Correction in multiplicity function

The multiplicity function f is often defined as the fraction of mass in collapsed haloes with mass in

a logarithmic interval in mass:

OF (M, Ly )
M, L looM = ——————~dlogM

f( 3 box)d 0og alogM d 0og

_dRy(M) | OF (ML)
dlogM dlogM

= Jo(M)— f1(M, Lpoy). (4.14)

= f(MaLbox) -

It is not possible to reduce this expression further while writing the correction term due to the finite
box size separately. We can, however, ascertain generic properties of the correction term fi (M, Ly,y)
from our understanding of F{(M, Ly, ). At large M, f is positive as Fi(M,Ly,,) decreases with
increasing M. Thus the mass fraction of haloes in this mass range is underestimated in simulations.
For typical models and simulations, this is the most significant effect of a finite box size.

At the scale of nonlinearity Fi(M,Lp,,) has a maxima, so f1(M, Ly,,) is zero and there is a scale
where corrections for the multiplicity function due to finite box size vanish. At smaller scales, the
slope of Fi and hence fi changes sign and the correction to the mass fraction in haloes is positive.
A finite box size leads to an overestimate of number of low-mass haloes. The overestimate is caused
by the absence of long wave modes, as the low-mass haloes do not merge to form high mass haloes.

The magnitude of overestimate depends on G, and hence on the slope of the power spectrum and

Lpoyx- In the limit M < M,,;, we can use equation (4.11) to compute the magnitude of overestimate:

N 36, C1| doy
J(M, Lpox) = fo(M) + Van o | dloght (4.15)

Here we have ignored the contribution of the exponential term in Eqn.(4.11). The correction term
scales as M("+3)/2 for power law models and is thus significant even at small mass scales if n >~ —3.
Clearly, the term is also large for CDM like power spectra if the slope of the power spectrum is close
to —3 at all scales in the simulation volume.

In Figure 4.4 we show the multiplicity functions fo(M) and f(M, Lp,,) by solid and dashed lines
respectively for a power law model with n = —2 and Ly, /r,; = 16. The scale at which 69 = §./v/3

is marked with a vertical dotted line; this scale almost coincides with the scale at which fi (M, Ly, )



4.3. MASS FUNCTION 69

AR | BELELARLLL | LERLRRRLL | ':"""'I_/' ULRRLY | T
- -/‘
O- — ]
Py |
ol ]
[y
.HE:
5]
|
QO -
- » - \
i Vi |
i \
I \
I \
1 1 \IIIIII 1 IIIIIIII 1 IIIIIIII Il.l IIIIIII 1 IIIIIII|| 1 1 1111
1 10 100 1000  10* 10° 108

M

Figure 4.4: This figure shows the exact multiplicity function fo(M) (solid line) and the multiplicity function
S (M, Ly, ) which is expected in cosmological N-body simulations. All the parameters for this figures are the
same as for Figure 4.3. The exact and approximate corrections in multiplicity function fj(M, L) are also
shown by the dot-dashed and dot-dot-dashed lines. The scale at which 6o = J,/ v/3 is marked with a vertical
dotted line. Below this scale the correction term f(M, Ly, ) is positive and hence there are more haloes in

simulation than expected in the model.
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changes sign'. At scales below this, the correction term fi (M, Ly, ) is positive and hence there are
more haloes in the simulation than expected in the model. The relative magnitude of the correction
term is large for M > M,; and this is the most significant effect of a finite box-size on the mass
function. The overestimate of the multiplicity function is typically a sub-dominant effect, as it is for
the model shown here. However, as we shall see below, this effect can be very significant in some

situations.

Also shown in Figure 4.4 is the approximate expression for fi(M,Lp,,) (dot-dot-dot-dashed
curve) in the limit M < M,;. Unlike the approximation for Fj(M,Ly,,) which is accurate over a
large range of scales, this is expected to be valid only in the limit of M < M,;; and indeed, is off by
about a factor of two at the smallest scales shown here. However, it is a good approximation if we go
to even smaller masses. We note that for this model, the overestimate of multiplicity function due to
the finite box is small and therefore is difficult to detect. For this model, C;/ 0% ~ ().2 at the scale of
nonlinearity and is smaller than 0.1 at scales where the over estimate in f(M) is maximum. At small

scales, f1/fo is typically of the same order of magnitude as C;/ G%.

4.3.3 Correction is the Sheth-Tormen Mass Function

In order to show that the results of our analysis are generic, we compute corrections for the Sheth-
Tormen mass function (Sheth & Tormen, 1999; Sheth, Mo & Tormen, 2001) also. In this case the

mass function is given by:

F(M,Lyyy) = % / A(L+x ) exp [—x*] dx (4.16)
SC/G(Mvaox)\/i

In the limit of A = 0.5 and ¢ = O this is identical to the usual Press-Schechter mass function (equa-

tion (4.7)). The maxima of the correction term F} (M, Ly,,) occurs when the following equation is

!"The change of sign happens at 6y = 1 instead of 6o = 0.97 drawn here with 8. = 1.68.
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As before, this reduces to the expression in the Press-Schechter case (equation (4.7)) in the limit
g = 0. The qualitative features of the finite box correction to mass function are the same for the two
prescriptions and may be considered to be generic. For reference, we write approximate expressions

for correction to the mass function F(M):

S, o2 52 5, \
Fil~— 1 < 1Al ¢ 4.18
= 2ncgeXp[ 20(2)} [ +(\/§G) ] (*-18)

and the multiplicity function f(M):
38. Ci < doy ) ( 2q) ( 8¢ )—Zq
= All+{1—— 4.19
fi 3 200 (4.19)

\/271:0_3 dlogM

for the Sheth-Tormen mass function.

4.3.4 N-Body Simulations

In order to check the predictions of our formalism we have also carried out a set of cosmological
N-body simulations. Here we do not try to fit for either the Press-Schechter or Sheth-Tormen mass
function to simulations. Instead we use a simulation with a larger L, as reference and compare the
number density of haloes as a function of mass with another simulation with a smaller Ly,,.

For N-body simulations we have considered a power law model with index n = —2 and normal-
ized it such that the scale of nonlinearity at the final epoch was 8 grid lengths. We consider the size of
the simulation box for the smaller and larger simulations to be 64 and 256 grid lengths respectively.
The smaller simulation was carried out with the TreePM code (Bagla, 2002; Bagla & Ray, 2003)
and the larger simulation was carried out with a parallel version of the TreePM code (Ray & Bagla,

2004).
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Figure 4.5: This figure shows the comoving number density of haloes n(M)dM in the mass range M — M +
dM for the large (solid line) and small (dashed line) simulations (see text). From this figure we observe that
the number density of low mass haloes is overestimated in the case of smaller simulations as is expected in

this formalism.



4.4. SUMMARY & CONCLUSIONS 73

Figure 4.5 shows the number density of haloes n(M)dM in cosmological N-body simulation for
a power law model (n = —2) with L;,, = 64 (dashed line) and L, = 256 (solid line). Note that
according to our definitions n(M) = f(M)/M?, where f(M) is the multiplicity function. One can
see that the number density varies approximately as a power law at small M and rapidly falls at
large M. As expected from our analysis the deviation from power law starts at smaller masses as the
number density of very massive haloes is underestimated in smaller simulations as compared to the
the bigger one i.e, the reference simulation. At smaller M, we find about 10% more haloes in smaller
simulation as compared to the reference one. It is noteworthy that the number density of low mass
haloes remains above that in the reference simulation at all masses below the rapid drop around 10°.
Both of the above features follow the predictions of our formalism. Indeed we have shown that these
features are independent of the specific analytical form for the mass function. Here we have also
shown that the same behavior is reproduced in N-Body simulations. A more detailed comparison

with N-body simulations is presented in Chapter 6.

4.4 Summary & Conclusions

In the present study we have given an analytic prescription for computing corrections due to the finite
box size in cosmological N-body simulations for mass variance, Press-Schechter mass function and
multiplicity function. We have shown that the corrections are typically small if the scale of interest
and the scale of nonlinearity are sufficiently small compared to the size of the simulation box. In
particular, if the scale of nonlinearity is not much smaller than the size of the simulation box, we
not only ignore power in modes larger than the simulation box but also the significant effects of
mode coupling from scales in the mildly nonlinear regime. This means that cosmological N-body
simulations are reliable only when r, r,; << Lpy.

In our formalism we have proposed 0% / G% as an indicator of the significance of finite box size;
any descriptor of the second moment of density can be used for this purpose but ¢ has the virtue of
being positive definite at all scales. Our proposal is that 67(r)/0§(r) and 63 (r(2))/05(ru(z)) have
to be much smaller than unity in order to ignore the corrections due to finite box size. Conversely,

the ratio 61 /0y at the scale of interest is indicative of the magnitude of correction due to the finite
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box-size. For a given relative magnitude of correction term (G} /00), Lpox /11 1s required to be larger
for a power spectrum with more large scale power. Indeed, the required L,/ approaches infinity

as the slope of the power spectrum approaches —3.

In the present study we have shown that the clustering amplitude 62(M), mass functions F (M)
and multiplicity functions f(M) are significantly affected by the size of simulation box if the scale of
nonlinearity is not much smaller than the size of the simulation box. Apart from quantitative effects,
the size of the simulation box can also lead to quantitative effects. For example, due to finite box
corrections, the amplitude of the density perturbations no longer remains a power law and the range
of scales over which it can be approximated by one becomes smaller as n+3 — 0. Since in the
linear regime, the radial pair velocity is related directly to the average two point correlation function
E (Peebles, 1980; Nityananda & Padmanabhan, 1994) and E is not a pure power law in simulations
due to box-size corrections, we expect that the pair velocities must also deviate from expected values.
This in turn leads to deviations from the self similar growth of density perturbations. This explains
the difficulty in getting scale invariant evolution for models like » = —2 in N-Body simulations (Jain
& Bertschinger, 1996; Jain & Bertschinger, 1998) For realistic models like the ACDM, the correction
term is significant only if the scales of interest are below a few kpc and becomes larger as we move
to smaller scales (see Figure 4.2). Indeed, at these small scales we may require Ly, /r ~ 10* or even
greater in order to manage C;/ 0(2) = 0.1. Of course, a bigger simulation volume is required if we
demand better accuracy. On the other hand, if we are interested in scales larger than 10?kpc, present

day simulations are sufficient for keeping C; / G(z) < 0.01.

We have shown that at sufficiently small scales the correction due to finite box size can be written
as a series of progressively smaller terms. The first correction term (Cj) is shown to be positive
definite. We have also shown that the first correction term is the same for two point correlation
function and 6%; indeed it is the same for all descriptors of the second moment for which the effective

window function goes to unity at small k.

As an application of our method, we have discussed corrections to mass function and multiplicity
function using the Press-Schechter as well as the Sheth-Tormen approach for a power law model

with n = —2. We have also given approximate expressions for the correction term and have shown
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that the approximation is very good in case of the mass function. The mass function is always under
estimated in simulations due to finite box-size corrections. The multiplicity function, and hence
also the number density of haloes of a given mass are underestimated at M > M,;;. At smaller mass
scales, however, the multiplicity function is overestimated and we find a greater number of haloes in
simulations than expected in the model. The mass scale at which the crossover from underestimate

to overestimate occurs is given by equation (4.14).

The overestimate at small scales is related to the underestimate of mass in haloes at large scales.
If the full power spectrum had been taken into account, the smaller haloes would have merged to
form more massive haloes. In the absence of large scale modes, the formation of massive haloes is
slowed down and a larger number of low mass haloes survive. A detailed analysis of the effect of
finite box size correction on the formation and destruction rate of haloes will be presented in the next
chapter. Of significant interest is the impact on rates of major mergers (Cohn, Bagla & White, 2001)

as these have implications for observations.

We have found that the overestimate in multiplicity function is large whenever the ratio
07 (r,Lpoy) /05 (r) ~ Ci(Lpox)/03(r) is large. To illustrate this correlation, we have plotted the mul-
tiplicity function fo(M) for the ACDM model in Figure 4.6. This has been plotted for redshift
z=720 and z = 15 and the mass range has been chosen such that a very large box size is required to
keep G%(r, Lpox)/ 0(2)(}’) smaller than 0.1. We have also plotted f(M, Ly,,) here, with L, = Sh™'kpc
(dotted curve), Lp,y = 20h’1kpc (dot-dashed curve) and Ly, = 100h’1kpc (dashed curve). These

correspond to Cy/ 0% ~ (.6, 0.3 and 0.19, respectively.

In the top and bottom rows of Figure 4.6 we show the Press-Schechter and Sheth-Tormen mass
function for the LCDM model at two epochs, z = 20 (left column) and z = 15 (right column). In
each panel the curve for the theoretical model i.e., when the size of the simulation box is infinitely
large, is shown by the solid line and curves for the cases Ly, = Sh~'kpc, 20h~ 'kpc and 1004~ 'kpc
are shown by the solid, dot-dashed and dashed lines respectively. It is noteworthy that the relative
error is similar for both the cases, even though the multiplicity function itself is different. At z =20,
the multiplicity function is underestimated by a large amount for L., = Sh ~'kpc, even though

Lpox/rn == 120, and if we are interested in scales around 1pc then Ly, /r =~ 5000. The situation
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Figure 4.6: The multiplicity function expected in the ACDM model (see text for details). The top row is for
Press-Schechter mass function and the lower row is for Sheth-Tormen mass function. The left column is for
z = 20 and the right column is for z = 15. The expected multiplicity function is plotted as a function of mass,
shown in each panel by a solid curve. Other curves correspond to multiplicity for a finite simulation box:
Lpoy = Shflkpc (dotted curve), Lpoy = 20h*'kpc (dot-dashed curve) and Ly, = 100h*1kpc (dashed curve).
These correspond to C; / 6(2) ~ 0.6, 0.3 and 0.19, respectively.
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at small masses is better for the other two simulation volumes considered here. For z = 15, the
scale of non-linearity is r,; = 1.4h~ 'kpc, very close to Ly, = 5h™'kpc, and hence we do not expect
believable results for this box-size. Indeed, the two panels on the right demonstrate the large errors
and the absurdly incorrect shape of the multiplicity function. The difference in f(M, Ly, ) and fo(M)
at 107%M_, is about 25% for C) (Lpox) /05 = 0.3. In this case Lygy = 20h~"kpc and Ly, /7~ 2 x 107,
The error in the multiplicity function is slightly larger than 10% for Ly, = 100h~'kpc even though
Lpox /7 = 10° and Ly, /ry =~ 67. The multiplicity function plotted here is the global function, and
the conditional mass functions should be used in order to estimate errors in simulations where a high
peak is studied at better resolution. Similar results are obtained for other mass functions that have

been suggested as a better fit to simulation data (Jenkins et al., 2001; Warren et al., 2006)

From the above discussion it is clear that the results of cosmological N-body simulations cannot
be reliable if Cj(Lpoy)/03(r) is close to unity. One may argue that models for mass function have
not been tested in this regime where the local slope of the power spectrum is very close to —3, but
the fact that error in amplitude of density perturbations itself is large should be reason enough to
worry about reliability of results. Further, the agreement in the magnitude of errors for the several

approaches to the mass function also gives us some confidence in our results.

We conclude that most of the cosmological N-body simulations are not affected by the errors in-
troduced by the finite size of the simulation box, as the slope of the initial power spectrum approaches
—3 only at very small scales (large wave numbers). However, high resolution simulations of earliest
structure formation in the ACDM model need to have a very large dynamic range before the results
can be believed within 10% of the quoted value. Indeed, our study may have some relevance to the

ongoing discussion about the Earth mass haloes (Diemand, Moore & Stadel, 2005; Zhao et al., 2007)

We note that it is extremely important to understand the sources of errors in N-Body simulations
and the magnitude of errors in quantities of physical interest. N-Body simulations are used to make
predictions for a number of observational projects and also serve as a test bed for methods. In this
era of “precision cosmology”, it will be tragic if simulations prove to be a weak link. We would like
to note that our results apply equally to all methods of doing cosmological N-Body simulations, save

those where techniques like MAP are used to include the effects of scales larger than the simulation
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volume.

The method for estimating errors due to a finite box-size described in this chapter can be used for
several physical quantities. In the present study we have used the method to study errors in clustering
properties and mass functions i.e., rms fluctuations in mass, mass functions and multiplicity func-
tions. In the next chapter we will study the effects of finite box size on the formation and destruction

rate of haloes.



Chapter 5

Finite volume effects -1I: Formation rate

5.1 Introduction

The mass function of collapsed objects in nonlinear gravitational clustering is an important mea-
sure which can be used to compare theoretical models with observations. In particular, the Press-
Schechter (Press & Schechter, 1974) mass function has been used in many semianalytic studies
which bridge the gap between the linear perturbation theory and cosmological N-body simulations.
However, the mass function does not contain all the information which is needed for various phys-
ical processes. For example, if we want to know the comoving number density of ionizing sources
at any redshift then the mass function contains insufficient information since not all bound objects
become the source of ionizing radiation; only those objects become sources which form during a
particular period of time (Chiu & Ostriker, 2000). In this situation we need to know the formation
and destruction rate of collapsed objects as a function of the cosmological redshift. The rate at which
quasars form in the early universe depends in an important way on the merger rate which is another
manifestation of the formation rate (Carlberg, 1990). From the above discussion it is clear that the
formation and destruction rates are important measures in nonlinear gravitational clustering. In the
present chapter we will use the formalism which we have proposed in Chapter 4 and give the ex-
pressions for corrections in the formation and destruction rate due to the finite size of the simulation

box.

79



80 CHAPTER 5. FINITE VOLUME EFFECTS -1I: FORMATION RATE

On the basis of an excursion set approach, Bond et al (Bond et al., 1991) gave expressions for
the fraction of mass that is incorporated in objects of a given mass at a given redshift. These ex-
pressions can also be used to compute the conditional probabilities and merger rates. Bower (Bower,
1991) studied the infall rate of galaxies using the conditional probabilities obtained from the Press-
Schechter formalism and compared these with cosmological N-body simulations. In this study it
was also shown that the conditional multiplicity function can be used to compute the rate at which
clusters of galaxies accumulate mass due to merging i.e., infall rate. Lacey and Cole (Lacey & Cole,
1993; Lacey & Cole, 1994) did a very detailed analysis of merging of haloes in gravitational cluster-
ing using the Press-Schechter formalism and derived an expression for the merger rate in terms of the
halo mass, epoch and the initial power spectrum. They argued that merger is a common process in
hierarchical clustering models and plays an important role in the formation of the present day galaxy
population. In order to derive the relations for the merger rate, accretion rate and other physical

quantities, Lacey and Cole followed the excursion set approach of Bond et al. (Bond et al., 1991).

Cohn, Bagla & White (Cohn, Bagla & White, 2001) used the extended-Press-Schechter formal-
ism and obtained analytic expressions for the major merger counts and compared these with high
resolution N-body simulations. One of the main aims of their study was to address the question
of how many major mergers a halo has gone through in a given period of time. This question is
important not only for simulation studies, but also has observational applications. In most of the
above mentioned studies conditional probabilities, multiplicities, merger rate etc., are computed on
the basis of the Press-Schechter formalism or using N-body simulations. This means that the for-
malism which we have introduced in the last chapter for finding corrections in the mass function due
to the finite size of the simulation box can be used for the merger rate and other physical quantities.
In the present chapter we consider the formation and destruction rates as defined in (Sasaki, 1994;

Kitayama & Suto, 1996) for our analysis.

The plan of the chapter is as follows. Following the approach given by of Sasaki (Sasaki, 1994)
and Kitayama & Suto (Kitayama & Suto, 1996) we give expressions for formation rate, destruction
rate, rate of change of number density in §5.2. We give our main results in the form of analytic

expressions for corrections in formation and destruction rate in §5.3 and use these for power law
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(n = —2) and the LCDM models. We summarize the main results of study in §5.4 and conclude. The

main results of the present study have been published in Prasad (2007).

5.2 Basic Equations

5.2.1 Formation and destruction rate

In the Press-Schechter formalism (see §1.5.4) the comoving number density Nps(M,t)dM of objects

which have mass in the range [M,M + dM| at time ¢ is given by

Nps(M,1)dM = % x ‘d’;(y) 'dM
2p dc(t) do(M) & (1)
—\am (_cz(M) aM )e"p (_202(1\4)) M 1)

Here 8.(1) = 8./D(t) and D(t) is the linear growth factor which depends on the cosmological model
being considered and 8.(¢) is taken to be 1.68 at the present epoch.
From equation (5.1) we can write an expression for the rate of change of comoving number

number density per unit time for objects which have mass in the range [M,M + dM|

(des(M.,t)>dM: 2po< 1 a’D(t)) (Gzac dG(M))

dt M \DX(t) dt (M) dt
2 82
. {] - 02<M>D2(t>} exP (‘202<M>Dz<r>) M 62

The first and second term in the right hand side of the above equation can be identified with the

formation rate and destruction rate respectively (Sasaki, 1994; Kitayama & Suto, 1996).

e o o G
__ (dNDd;t(Mt)) M+ (dNF;—t(MI)) M (53)

The formation rate (dNg,ym(M,t)/dt)dM quantifies the change in the comoving number density of

objects around mass M, per unit time, due to the formation of objects in that mass range when objects
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of mass smaller than M merge together.

dNpom(M,1) 1 dD(t) &2
( dr )dM N, [Gz(M)Dz(t)

o (i a) (ot i)

5

The destruction rate (dNpess(M,t)/dt)dM quantifies the rate of change of comoving number

}Nps(M,t)dM

density of haloes in the mass range [M,M + dM]| when the haloes in that mass range merge together

and form bigger haloes.

(dNDeZ’t(M,t)> dM — %dz[(l)NPS(M,t)dM

?\; (Dzl( )dlc)zft)> <_02%w) dccgw)> aM

5

5.3 Correction in formation and destruction rate

From equation (5.1), (5.2), (5.4) and (5.5), we see that the comoving number density of haloes,
formation rate, destruction rate and the rate of change of comoving number density of haloes in the
mass range [M, M + dM)| is related to the mass variance 62(M). This means that on the basis of the
correction in the mass variance G2 (M) due to finite size of the simulation box (see equation (4.2)) we

can find the corrections in these physical quantities also.

5.3.1 Corrections in comoving number density

The comoving number density of haloes Npg(M,t)dM in the mass range [M,M + dM] which we

expect in cosmological N-body simulations is given by

Nps(M,t)dM = \/790 O (_02(]M) dzgy)) exp (—ﬁ%) M

:NPSO(M,t)dM—NpS] (M,Z)dM (5.6)
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Here Nps,(M,t) and Nps(M,1) are the theoretical (box size infinite) and the actual (box size finite)

comoving number densities respectively where

2
Nps, (M, 1)dM = \/7 Po_b <00 ;4) dG;jfd )> exp (20%(1‘4%) M (5.7)
and
-3/2
NPS](M,t)dM—% [1—(1_%9 / (1 jz(‘))
X exp{—s—g (i ! )H Nps,(M,t)dM (5.8)
202 (1) \ &2 o 0
or

do? 307 807
doj 205 2D2(t)c}
Tn equation (5.9) the coefficient of Nps,(M,) changes sign at the scale for which 6y ~ §./D(t)V/3 =

1
Nps, (M,1)dM = { } Nps,(M,t)dM if o} /o3 < 1 (5.9)

8.(¢)/+/3 so the number density of objects below this scale is overestimated and the number density
above this is scale underestimated. This is in accordance with our earlier results (BP06). The left and
right panels of Figure 5.1 show the theoretical comoving number density Nps,dM (solid lines) and the
comoving number density NpsdM (dashed line) as is expected in cosmological N-body simulations
for the power law model (n = —2) and the LCDM model respectively. For the power law model
we consider the size of the simulation box to be 128 grid lengths and compute N(M) at z = 0. We
normalize the power spectrum such that the scale of nonlinearity at z = 0 is 8 grid lengths. For the
LCDM model the size of the simulation box is 10 #~! Mpc and calculation is shown for z = 6. In
this case the scale of nonlinearity at z = 0 is 84~ !Mpc. In both the panels the actual and approximate
corrections in the comoving number density are shown by the dot-dashed and dotted lines. This
figure clearly shows that for both case i.e., power law and LCDM, cosmological N-body simulations
underpredict the comoving number density of large mass haloes and overpredict that of the small

mass haloes.

5.3.2 Formation rate

The formation rate of haloes (dNpyrm(M,t)/dt)dM in the mass range [M,M + dM] in an N-body

simulation is given by equation (5.4)
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Figure 5.1: The left and right panels of this figure show the theoretical value of the comoving number density
i.e., Nps,dM (solid line), and the number density as is expected in N-body simulation i.e., NpsdM (dashed line)
for a power law (n = —2) and LCDM model respectively. In the case of the power law model we consider
the size of the simulation box to be 128 grid lengths at z = 0. The scale of nonlinearity is taken to be 8 grid
lengths. For the LCDM case we take the size of the simulation box 10 #~'Mpc and plot values at z = 6. In
this case the scale of nonlinearity is 8%~ 'Mpc at z = 0. We also show the magnitude of exact and approximate

corrections in the comoving number density Nps,dM by the dot-dashed and dotted lines (see text for details).

(W) M = %%3 (04](:) d?zt(t)) (_&?gw) dc(gl/l ))

_ <—dNF0”$(M’t)> aM — (—dNF”’Z;(M’I)) am (5.10)
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Here (dNForm,(M,t)/dt)dM and (dNfporm, (M,t)/dt)dM are the theoretical formation rate and the

correction term respectively where

(dNFormo(M,t)>dM_ 2p0( 1 dD@)dM

dt M \ D) dr
& dco(M)) ( &2 )
« [ — - < 5.11
( ) dar )P\ 2a2(m)D(r) G-I
and
5/2
dNForml(M’t) dM:l 1— _G_% / _ﬁ)
dt 2 S dog
5?2 11 dNForm, (M, t)
_ - — 0 )V dM A2
<ot (@) )] (5 512
or
(dNForml (M’t)>dM"‘1 |:d0% _ 50% + 526% ] (dNFOVﬂIO(Mvz))dM (5 13)
dt 2 |do} 20} 2D (t)o} dt '

if 63 /03 < 1 The left and right panels of Figure 5.4 show the theoretical formation rate (dNgym, /dt)dM
and the formation rate (dNgym/dt))dM which we expect in cosmological N-body simulations for the
power law and LCDM models respectively. In this figure the parameters for the power law and
LCDM model are the same as in Figure 5.1. Since the formation rate is directly proportional to the
comoving number density, it follows the same trend as the comoving number density. However, in
this case the scale at which the correction term changes sign is different from the scale at which the
correction term for the comoving number density changes sign i.e., here it is the scale for which
6o = 8./D(t)V/5 = 8.(t)/+/5. This figure shows that the formation rate of massive haloes is sup-
pressed and that of low mass haloes is enhanced in cosmological N-body simulations due to the finite
size of the simulation box. The main reason behind the suppression of the formation of large mass
haloes is the absence of fluctuations in the initial density field at large scales due to truncation of

power.
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Figure 5.2: The left and right panels in this figure show the theoretical formation rate i.e., (dNgom,/dt)dM

(solid line) and the formation rate (dNp,m/dt)dM (dashed-line) which we expect in cosmological N-body

simulation for the power law (n = —2) and LCDM model respectively. The magnitude of exact and approx-

imate corrections are also shown by the dot-dashed and dotted lines (see text for details). All the parameters

for both the models are the same as in Figure 5.1.

5.3.3 Destruction rate

Following the same approach as we have applied for the formation rate, we can find the corrections

due to finite box size for destruction rate i.e., equation (5.5) also.

dNDest(M:t) dM = dNDesto(Mat) dM — dNDestl(Mat) dM
dt dt dt

where

<a’NDeS,O(M,t)>dM: 2p0( 1 a’D(t))( ¢ dGo(M)>dM

di M S oi(M) dt

(5.14)

(5.15)
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Figure 5.3: The left and right panels of this figure show the theoretical destruction rate i.e., (dNpeg, /dt)dM
(solid line) and the destruction rate (dNpey/dt)dM (dashed-line) which we expect in cosmological N-body
simulation for the power law (n = —2) and LCDM model respectively. The magnitude of exact and approxi-
mate corrections are also shown by the dot-dashed and dotted line (see text for details). All the parameters for

the power law and LCDM models are the same as in Figure 5.1.

and
dNpest, (M, 1) 1 o2\ do?
et DY gy =~ |1- (1-2L -1
dt 2 o do}

H (—dND“Z;t(M ! )) (5.16)

(dNDeS,I(M,t)) ang e L [dcs%_&s% 8207 } (dNDeS,O(M,t))
dt doj 203 2D(t)o} dt

or

> (5.17)

if G% / (5(2) < 1 Figure 5.3 shows the destruction rate of haloes for the power law model (left panel)
and the LCDM model. All the parameters and line styles in this figure are the same as in Figure 5.1.
In this case the correction term changes sign at the same scale at which the correction term for the

comoving number density changes. This is because Nps, /Nps, and Npeg, /Npest, are equal and so
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Nps,1 and Npes, have the same scale of zero crossing. Here also we find that the destruction rate for
the massive haloes is suppressed. However, it is enhanced for the low mass haloes when we reduce

the size of the simulation box.

5.3.4 Rate of change on number density

The number density of haloes in the mass range [M,M + dM| changes mainly due to the formation
of haloes of mass M when smaller haloes i.e., haloes with mass < M, merge together, and due to
destruction of haloes of mass M when larger haloes i.e., haloes with mass > M, form. The rate of

change of the number density of haloes (dNps/dt)dM is given by equation (5.2)

(%) M — D—(:) d?;’) [1 -5 (Migz)z (I)] Nps(M,t)dM
o <dND+MI)) M (W> dM (5.18)

From equation (5.18) it is clear that the rate of change of number density Npg is dominated for
6(M) < &./D(r) by the formation rate, and for 6(M) > 3./D(t) by the destruction rate. For any time
t, we can find a mass scale M, for which 6(M,) = §./D(t) i.e., the formation and the destruction
rate are equal and so there is no net change in the comoving number density of objects at that scale.
In hierarchical clustering models i.e., models in which 6(M) is a decreasing function of mass, the
comoving number density at large scales mainly changes due to the formation of massive haloes and
at small scales due to the destruction of smaller haloes.

The rate of change in the number density is underestimated at large and small scales, but overes-
timated at intermediate scales. This feature is clear from Figure 5.4 in which the actual and approx-
imate error terms are positive at large and small scales but they are negative at intermediate scales

and we have two zeroes crossing.

5.3.5 Merger rate

The formalism which we have developed can be used to find correction in merger rate of haloes also

which is generally expressed in the form of conditional probabilities (LLacey & Cole, 1993; Lacey &
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Figure 5.4: The left and right panels of this figure show the theoretical rate of change of comoving number
density (dNps,/dt)dM (solid line) and the rate of change of comoving number density (dNps/dt)dM (dashed-
line) which we expect in cosmological N-body simulation for the power law (n = —2) and LCDM model
respectively. The magnitude of exact and approximate corrections are also shown by the dot-dashed and
dotted line (see text for details). All the parameters for the power law and LCDM models are the same as in

Figure 5.1.

Cole, 1994; Cohn, Bagla & White, 2001).
The conditional probability of a halo which has mass in the range [M4, M4 +dM,| at time t4 to

become a part of a halo having mass in the range [Mp, Mp+ dMp| at time tp is given by the following

expression
de(MA,ScA |MB,SCB)dMA _ 1 80,4 — 863 doﬁ exp | — (SZA — 833 dMA (5.19)
dM; V2 (6} —0j)*/2 [dMy 2(c; —o3)

Note that here haloes with mass M4 and Mp are identified with the regions in the initial density field
which have linearly extrapolated density contrasts greater than 6., and &, respectively. Here (5124 and
(5,23 represent the mass variance in the regions which lead to collapse of haloes of mass M4 and Mp at

time 74 and tp respectively.
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On the basis of equation (5.19) we can also write an expression for the conditional probability of

haloes of mass My at time 74 being incorporated in haloes of mass Mp at time 5.

3/2
(M, By MaBe) o 1 Bey(Bey =) [ o} } | do},
dMp V21 ¢, 0%(0] —03) dM,
2 242
X exp {— (Oey 1~ 80,05) }dMB (5.20)
20;03(04 —03)

In equation (5.19) and equation (5.20) the only time dependent functions are the linearly extrapolated
critical density contrasts J., and ., i.e., 8., = 8./D(t4) and §., = 8./D(tg) where D(t) is the linear
growth factor and d, is a constant.

In order to find merger the rates, we take the limits 64 — &g and M4 — Mp. This gives us the
following expression for the rate at which haloes of mass M, are incorporated into haloes of mass
Mp at time 7p

dfa(My — Mg;t , Myt — At|Mp,1
faAMp — Mpit) 0y i AV M3, 1)
dt Ar—0 Ar

il 1  d.(t)] | do}
-V 2n (o3 —03)32 dt | |dMy

In the same way we can find the rate at which haloes of mass Mp are formed from growth of

dMy

dM (5.21)

haloes of mass Mp at time g

dfs(Ms— Mgit) [T a1 48] |do}
dt V27 |o5(ch —o3) dr | |dMg
A

Equation (5.21) and equation (5.22) show that df4/dt and d fp/dt are related to mass variance 05

and 0%. With the help of these equations we compute corrections in d f /dt i.e., dfa, /dt, and d fg/dt

i.e., dfp,/dt, in terms of corrections in 01% ie., 03‘] , and correction in (5129 1.e., ()'1231 , in the following
way
2 2\ 32 Jo2
dfa _ dfac _dfa _ |, _({_ % "% | 494\ || dfa (5.23)
dt dt dt Gﬁo — 0%, dcﬁo dt
where
dfa, |1 1 dB:(1)] |44, |
dt — \om(c] —op )P dr ||dm,|""
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and
dfs _ay ap_ | (1 %) (o T (e T (e
dt i dt S 3, S0 —C%, doy,
2(1) S5 o /s
“"p{‘ : <6%0<6%0]6%1> Sy ) ] (3249
where
3/2
deo _ i G,%O _dac(t) dc%o exp —52(1‘) 1 _ 1
dt V 2z 63,(04, —O%,) dt | |dMpg 7\ 203, 203,

These expressions can be used to quantify the effects of a finite simulation box on merger rate.

5.4 Discussion

In the hierarchical clustering models of structure formation, formation and destruction of haloes is
a common process. In the present study we have shown that the formation and destruction rate of
haloes due to gravitational clustering are affected significantly if the size of the simulation box is
not sufficiently large. On the basis of the Press-Schechter formalism we have given the analytic
expressions for the corrections in the comoving number density, formation rate, destruction rate and
the rate of change in the number density of haloes at a given mass scale. We have considered the
implications of our analysis for the power law (n = —2) and LCDM models. Since the box corrections
are more important for models which have significant power at large scales, most of the models in
which there is none or very less power at large scales are not affected by the size of the simulation
box. However, for models in which there is a lot of power at large scales (n is large and negative)
the box effects can be quite large. In both the cases i.e., power law and LCDM models, the scales at
which we have shown the corrections are far below the size of the simulation box.

The main conclusions of the present study are as follows:

e [f the size of the simulation box in N-body simulations is not large enough then the clustering

amplitude is underestimated at all scales.

e At any given time, there is a scale above which merging is dominated by the formation rate

and below which it is dominated by the destruction rate.
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The comoving number density of haloes is underestimated at large scales and overestimated at

small scales when we reduce the size of the simulation box.

The formation and destruction rate also get modified by reducing the size of the simulation

box. Particularly, they are underestimated at large scales and overestimated at small scales.

The suppression of the formation rate as well as destruction rate at large scales is mainly due
to the absence of fluctuations in the initial density field at large scales due to limitation of box

size.

In N-body simulations which have small power at large scales the corrections due to box size

can be ignored.



Chapter 6

Finite volume effects -I11: Skewness

6.1 Introduction

In Chapter 4 we presented a prescription for taking into account the corrections in physical quantities
due to finite box size in cosmological N-body simulations. We gave explicit expressions for correc-
tions in mass variance, two point correlation function, mass function and multiplicities. In Chapter 5
we generalized our formalism and gave expressions for corrections in the formation and destruction
rate of haloes as well as for merger rates. In the present chapter we extend our formalism and study
the effect of a finite box size on Skewness and higher moments in the weakly nonlinear regime. We
also test our theoretical predictions with a set of cosmological N-body simulations. In most cases we
find good agreement between our theoretical estimates and N-body simulations. The main results of

the present study have been published in (Bagla, Prasad & Khandai, 2008).

In §6.2 we review our prescription for estimating the corrections in physical quantities due to
finite box size and give expressions for corrections in Skewness Sz and Kurtosis S4 due to finite box
size in cosmological N-body simulations. In §6.3 we present the results of our N-body simulations.
We compare the theoretical estimates of two point correlation function, Skewness and number density
of haloes with N-body simulations. We find that in most cases there is a good agreement between the
theoretical estimates and N-body simulations. We also study the effects of finite box size on relative

pair velocity statistics and nonlinear scaling relations. We summarize the main results of our study

93
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in §6.4 and conclude.

6.2 Reduced Moments

In Chapter 4 we showed that the amplitude of clustering i.e., mass variance, is underestimated at all
scales when the size of the simulation box is finite. We showed that the mass variance Gz(r, Lpoy) in

simulations is related to the theoretical mass variance 0(2) (r) in the following way (see §4.2 for detail):

6°(r, Lox) = 65(r) — 07 (1, Lpox) (6.1)

here 63(r, Ly,y) is the correction due to a finite box size. At large scales 63(r) and 67(r, Ly,y) have
a similar magnitude and the rms fluctuations in simulations become negligible compared to the ex-
pected values in the model. As we approach small r the correction term G%(}’, Lpoy) is constant and
for most models it becomes insignificant in comparison to 6(r). In models where 63(r) increases
very slowly at small scales or saturates to a constant value, the correction term (5% can be significant
at all scales.

In a weakly nonlinear regime, reduced moments like Skewness S3 and Kurtosis S4 can be com-
puted analytically using perturbative methods (Bernardeau, 1994). The expected values of reduced
moments are directly related to the slope of the initial or linearly extrapolated 62(r). We can use the

corrections in clustering amplitude 62 (r) for estimating corrections in reduced moments S3 and S in

the weakly nonlinear regime.

34 JInc?
_ 2
53 7 + dinr ©.2)
from equation (6.1) and equation (6.2)
34 dln(c}—o7)
S$3 = —4+——
7 dinr
34 dlno}  dIn(l-of/cp)
7 Olnr dlnr
= 83,— 53 (6.3)

Here §3, is the expected value of S3 for the given mode, i.e., when there are no box corrections and

S3, 1s the correction term in S3 due to a finite box size.
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In general we expect that G% /0(2) increases as we go to larger scales. Thus the Skewness is

underestimated in N-Body simulations and the level of underestimation depends on the slope of

(5% / 0(2) as compared to the slope of 0%. In the limit of small scales where (5% is almost independent of

scale, we find that the correction is:

g — ﬁ_i_alno% dIn (1—0%/0})
’ 7  dlnr dlnr
34 d(o1/c}) 3 (o2
N 7—(n—|—3)— dlnr 0 dlnr ((T%)
34 o2 3 [(o?\’ 1
~ 7—(n+3){1+6—%}+0<alm<6—%) +O(G—%

907
dlnr

)

(6.

4)

Here n is the index of the initial power spectrum we are simulating. For non-power law models this

will also be a function of scale. The correction becomes more significant at larger scales and the net

effect, as noted above, is to underestimate S3.

Box size effects lead to a change in slope of 62, and hence the effective value of n changes.

The last term in equation (6.3) is the leading order offset in Skewness in N-Body simulations as

compared with the expected values in the model being simulated. We would like to emphasize that

this expression is valid only in the weakly nonlinear regime.

Similar expressions can be written down for Kurtosis and other reduced moments using the ap-

proach outlined above. We give the expression for Kurtosis below, but do not compute further mo-

ments as the same general principle can be used to compute these as well.

5, — 6071, 620l  7[dIno? > 9%Inc?
* 7 13237 3 9lnr ' 3| dlnr dntr
6071 62 o] 7 807 o7
~ —— — 4+ |1+ L+ +3)?|1—==L|+0 1
33 3T ){ +og}+3(”+ ) { 70%]+ (alnr(cg

6.3 N- body simulations

) )

1 do?

G_%alnr

)

In order to study the effects of the size of the simulation box on physical quantiles we have carried

out a set of N-body simulations. Details of simulations are given in Table 6.1.

We compare the analytical estimates for finite box size effects for various quantities with N-Body

simulations. Such a comparison is relevant in order to test the effectiveness of approximations made
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Model | Spectral Index | Cut Off (k.)
Al -2.0 ky
A2 -2.0 2ky
A3 -2.0 Ak ¢
B1 -2.5 kg
B2 -2.5 2ky
B3 -2.5 Ak ¢

Table 6.1: This table lists characteristics of N-Body simulations used in our study. Here the spectral index
gives the slope of the initial power spectrum and the cutoff refers to the wave number below which all pertur-
bations are set to zero: ky =21 /Loy is the fundamental wave mode for the simulation box. All models were
simulated using the TreePM code. 8 x 10 particles were used in each simulation, and the PM calculations
were done on a 200° grid. Power spectra for both the A and the B series of simulations were normalized to
ensure ¢ = 1 at the scale of 8 grid lengths at the final epoch if there is no box-size cutoff. A softening length

of 0.5 grid lengths was used as the evolution of small scale features is not of interest in the present study.
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in computing the effects of a finite box size. We have made the approximation that the effects of mode
coupling between the scales that are taken into account in a simulation and the modes corresponding
to scales larger than the simulation box are ignored. We believe that this should not be important

unless the initial power spectrum has a sharp feature at scales comparable with the simulation size.

In order to simulate the effects of a finite box size, we used the method employed by (Bagla &
Ray, 2005) where initial perturbations are set to zero for all modes with wave number smaller than
a given cutoff. For a finite simulation box, there is a natural cutoff at the fundamental wave number
ks = 21/Lyyy, and simulations Al and B1 impose no other cutoff. Simulations A2 and B2 sample
perturbations at wave numbers larger than 2k, whereas simulations A3 and B3 are more restrictive
with non-zero perturbations up to 4k¢. The cutoff of 2k and 4k in this case corresponds to scales

of 100 and 50 grid lengths, respectively.

We have chosen to work with models where box size effects are likely to be significant, partic-
ularly with the larger cutoff in wave number. This has been done to test our analytical model in a

severe situation, and to illustrate the difficulties in simulating models with large negative indices.

We begin with a visual representation of the simulations. Figure 6.1 shows slices from simula-
tions A1, A2 and A3 respectively at the earlier (left column) and later epoch. Corresponding plots for
model B1, B2 and B3 are shown in Figure 6.2. We identify the early and later epochs with the epochs
when the scale of nonlinearity in the model without a cutoff is 2 and 8 grid lengths respectively. The
relevance of box size effects is apparent as the large scale structure in the three simulations is very
different even at the early epoch when r,; = 2, much smaller than the effective box size for these
simulations. Disagreement between different simulations becomes even more severe as we go to the

later epoch with r,,; = 8 grid lengths.

Visual appearance for simulations B1, B2 and B3, shown in Figure 6.2 follows the same pattern
as of simulations A1, A2 and A3 (Figure 6.1) . In this case the spectral index is closer to —3 than for
simulations of the A series shown in Figure 6.1, hence the larger scale modes are more important for
evolution of perturbations even at small scales. It is interesting to note that the largest under-dense
region in simulation B1 at early times is already comparable to the box size and hence we require

Liox /71 => 100 for the effects of a finite box-size to be small enough to be ignored for simulations
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Figure 6.1: The first, second and the third row in this figure show the slices for models A1, A2 and A3 (see
table for details) respectively at an early epoch when the scale of nonlinearity is 2 grid lengths (left column)

and a later epoch when the scale of nonlinearity is 8 grid lengths (right column).
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Figure 6.2: The first, second and the third row in this figure show the slices for models B1, B2 and B3 (see
table for details) respectively at an early epoch when the scale of nonlinearity is 2 grid lengths (left column)

and a later epoch when the scale of nonlinearity is 8 grid lengths (right column).
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of the power law model with n = —2.5. This constraint is even stronger for models with the slope of

the power spectrum closer to n = —3.

6.3.1 Clustering amplitude

The top and bottom panels in Figure 6.3 show the averaged correlation function % for the A and B
series models respectively at the early (left column) and later epoch (right column). We have shown %
as a function of scale in these panels. Also shown are the linearly extrapolated values of & computed
using our formalism for estimating the effects of a finite box-size. Data from N-Body simulations
is shown as thick curves whereas the theoretical estimates are shown as thin curves with the corre-
sponding line style. It is clear that the analytical estimate for & in a finite box captures the qualitative
nature of the change from the expected values, even though the analytical estimate is linearly extrap-
olated whereas we are comparing it with results from an N-Body simulation. This is the main reason
for disagreement between two curves at small scales where we expect departures from linear theory.
Our analysis works better for the n = —2 model used in the A series of simulations as compared
to the B series of simulations for the n = —2.5 model where it systematically underestimates the

suppression of E

6.3.2 Skewness

The top and bottom panels in Figure 6.4 show Skewness S3 for the A and B series models respectively
at the early (left column) and later epoch (right column). Apart from the curves that show S3 from
simulations (thick curves) and our analytical estimate for the weakly nonlinear regime (thin curves),
we also show the value of S3 expected in the weakly nonlinear regime in absence of any finite box size
effects by the dotted horizontal line. The analytical estimate of S3, computed using equation (6.2)
matches well with the values in N-Body simulation at the relevant scales. It is noteworthy that the
match between the two is better for a larger cutoff in wave numbers. We believe that this is due
to sparse sampling of the initial power spectrum at scales comparable to the box size and due to
this our approximation of the sum over wave modes by an integral is not very good. This becomes

particularly severe if some of these modes take on exceptional values, far away from the typical
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Figure 6.3: The first and second row in this figure show the average two point correlation function for

models Al, A2, A3 and B1, B2, B3 respectively at the early epoch (left column) and later epoch epoch (right
column). In all the panels models with k. = k¢ (Al and B1), k. = 2k; (A2 and B2) and k. = 4k (A3 and

B3) are represented by the solid, dashed and dot-dashed lines. The thick and thin lines represent the physical

quantities in simulations and their linearly extrapolated values.
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Figure 6.4: The first and second row in this figure show Skewness 3 for models Al, A2, A3 and B1, B2, B3
respectively at the early (left column) and later epoch (right column). In all the panels models with k. = k7 (A1l
and B1), k. = 2ky (A2 and B2) and k. = 4k; (A3 and B3) are represented by the solid, dashed and dot-dashed
line styles. The thick and thin curves in all the panels represent the physical quantities in simulations and their
linearly extrapolated values. We also show the values of S3 when there are no box size effects by the dotted

line.



6.3. N- BODY SIMULATIONS 103

value.
T T T T I T T T T T T T T l T T T T

<+ L i
D —
oL |
s O | i

vl
J i i
m!" - -
2 o[ ]
o = =
- ]
O = =
O [ 1 1 L 1 I L 1 L 1 | I 1
1 2 3 4

n+3

Figure 6.5: This figure shows the theoretical estimates of corrections in S3 as a function of the index of power
spectrum at scales Ly, /5 (top line), Lp,y/10 (middle line) and Ly, /20 (bottom line). For a given tolerance of
the error in S3 due to finite box effects, this gives us the largest scale at which the simulation may be expected

to give reliable results.

We argue that it is desirable that in N-Body simulations the intended model is reproduced at
all scales between the resolution of the simulation and a fairly large fraction of the simulation box.
The outer scale up to which the model can be reproduced fixes the effective dynamical range of
simulations. It is desirable that S3 be within a stated tolerance of the expected value at this scale. In
Figure 6.5 we plot S3,/S3, for power law models at the scale Lyox /20, Lpox /10 and Lyox /5. These
are plotted as a function of the spectral index n. It can be shown that this ratio, as also 6 /0cy are
functions of scale only through the ratio r/Lyp,c. We find that S3,/S3, is large for large negative

n and decreases monotonically as n increases. This ratio is smaller than 10% only for n > 0.8 at
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r = Lpox/5. The corresponding number for r = Lypox /10 is n > —1.6. Clearly, the effective dynamic
range decreases rapidly as n +3 — 0. This highlights the difficulties associated with simulating

such models.

6.3.3 Mass function

The top and bottom panels in Figure 6.6 show the number density of haloes N(M)dM for the A and
B series models respectively at the early (left column) and later epoch (right column). In order to
compute the number density haloes have been identified using the Friends of Friends (FOF) method
with a linking length of 0.2 in units of the grid length. Plotted in the same panels are the expected
values computed using the Press-Schechter mass function with a correction for the finite box size.
Here the threshold density contrast 8, was chosen to ensure a good match between the theoretical
prediction and the curves from the Al simulation at the early epoch. We used 6, = 1.15 from these
considerations.

We find that the qualitative features of the mass function are reproduced correctly by the analyti-

cal approximation, namely:

e The number density of the most massive haloes declines rapidly as the effective box size is

reduced.

e The number density of low mass haloes increases as the effective box size is reduced.

However, at a quantitative level there are two discrepancies.

e The mass scale where the number density of haloes begins to fall off is not computed correctly

in our formalism.

e The magnitude of over estimation of the number density of low mass haloes is much larger
in the analytical calculation as compared to the variation seen in simulations. The softening
length used here is more than twice the linking length and this may be partially responsible for

this mismatch.
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Figure 6.6: The first and second row in this figure show the number density of haloes N(M)dM for models

Al, A2, A3 and B1, B2, B3 respectively the early (left column) and later epoch (right column). In all the
panels models with k. = ks (Al and B1), k. = 2k (A2 and B2) and k. = 4ky (A3 and B3) are represented
by the solid, dashed and dot-dashed lines. The thick and thin lines in all the panels represent the physical

quantities in simulations and their linearly extrapolated values.
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6.3.4 Pair velocity

In our discussion of analytical estimates of the effects of a finite box size on observable quantities,
we have so far omitted any discussion of velocity statistics. The main reason for this is that the
power spectrum for velocity is different as compared to the power spectrum for density and one can
get divergences for quantities analogous to the second order estimators analogous to 6> for models
with —3 < n < —1. This is due to a more significant contribution of long wave modes to the velocity
field than is the case for density. It is, however, worthwhile to test whether relative velocity statistics
are affected by this or not. It is also important to check whether considerations related to velocity
statistics put a stronger constraint on the box size required for simulations of a given model.

We measure the radial pair velocity and also the pair velocity dispersion in the simulations used

in this work. These quantities are defined as follows:

h(r)__<(Vj—V62—1. (zl‘j—l‘i)> 6.5)

where the averaging is done over all pairs of particles with separation r;; = ‘ (r.,‘ — ri) ‘ = r. In practice

this is done in a narrow bin in 7. Here a is the scale factor, H is the Hubble parameter and v; is the

velocity of the ith particle. Similarly, the relative pair velocity dispersion is defined as:
2

_ Ave[)

22,2
aHrij

o> (r) (6.6)

where v;; is the relative velocity for a pair of particles, and averaging is done over pairs with separa-
tion r.

In the top panels of Figure 6.7 we plot the pair velocity as function of distance at the early (left
panel) and later epoch (right panel) for models Al, A2 and A3. Identical quantities for B series
models are being plotted in top panels of Figure 6.8. In each panel, we find that the dependence of
pair velocity on r is very sensitive to the small k cutoff used in generating the initial conditions for the
simulation. It has been known for some time (Hamilton et al., 1991; Nityananda & Padmanabhan,
1994) that the pair velocity is an almost universal function of E This is certainly true in the linear
regime where h = 2§ /3 for clustering in an Einstein-de Sitter universe (Peebles, 1980). In order to

exploit this aspect, and also to check whether the relation between 4 and <E, in the weakly nonlinear
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Figure 6.7: The top and bottom rows in the figure show the average pair velocity & (see text for definition) as
function of distance and two point correlation function respectively for models A1, A2 and A3 at the early (left
column) and later epoch (right column). In this figure also the same line styles are used for various models as

are used in the previous figures.



108 CHAPTER 6. FINITE VOLUME EFFECTS -111: SKEWNESS

o
~—i

10

T T T T T I T T
n=—=2.5
ry=8.0

B
Il
|
2
o

T T Ty
T T T
Lol

e s ) -

i \'-\ ~ — \‘\’ \\

o F N~ o~ E cF N < E
o N S o o N ]
r . N r N ]
C . . C N ]
- »\ - .\ -

N \,

— N\ — \

o L \ o L \

oz 5 10 20 o2 5 10 20

r r

o o

S e S R
u n=-2.5 1 u n=-2.5 1
K r;=2.0 ] K r,;=8.0 ]

a [ a [ / ]
L L K i
/
P

- L - - L Vs _

or ] o Vs 3
C C e 1
L ,.,‘ o ,‘/' b
S S

@.01 0.1 F; 1 10 @D.01 0.1 3 1 10

Figure 6.8: The top and bottom rows in the figure show the average pair velocity & (see text for definition)
as function of distance and two point correlation function respectively for models B1, B2 and B3 at the early
(left column) and the later epoch (right column). In this figure also the same line styles are used for various

models as are used in the previous figures.
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Figure 6.9: The top and bottom rows in the figure show the velocity dispersion G, (see text for definition)
as function of distance and the average two point correlation function respectively, for models A1, A2 and A3
at the early (left column) and later epoch (right column). In this figure also the same line styles are used for

various models as are used in the previous figures.
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Figure 6.10: The top and bottom rows in the figure show the velocity dispersion G, (see text for definition)
as function of distance and the average two point correlation function respectively, for models B1, B2 and B3
at the early (left column) and later epoch (right column). In this figure also the same line styles are used for

various models as are used in the previous figures.
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regime is sensitive to the box size we plot £ as a function of E at the same scale in the bottom panels
of Figure 6.7 at early (left column) and later epoch (right column). Identical quantities for B series
models are being plotted in bottom panels of Figure 6.8. We find that all the models fall along the
same line in this case and variations induced by the finite box size are small even in the weakly

non-linear regime.

The top and bottom panels of Figure 6.9 show the relative velocity dispersion as a function of
scale and the average two point correlation function E respectively at the early (left panel) and later
epoch (right panel). Again, we find that although the relative pair velocity dispersion at a given scale
is sensitive to the size of the simulation box, it remains an almost time independent function of & for
a given model. Thus we can use estimates of the correction in E to get an estimate of corrections in
pair velocity statistics. Identical quantities for B series models are being plotted in bottom panels of

Figure 6.10.

6.3.5 Nonlinear scaling relations

We have outlined the method for estimating the initial/linearly extrapolated rms amplitude of density
perturbations in N-Body simulations. The same approach can be used to estimate other measures of
the amplitude of perturbations, e.g., the averaged two point correlation function % (Bagla & Prasad,
2006). Given that the radial component of pair velocity is an almost universal function of E, as seen
in Figure 6.7 and Figure 6.8, we can use scaling relations (Hamilton et al., 1991; Peacock & Dodds,
1994; Nityananda & Padmanabhan, 1994; Jain, Mo & White , 1995; Peacock & Dodds, 1996; Smith
et al., 2003) to compute the nonlinear % from the linearly extrapolated estimate. There is one subtle
issue here, namely, many of the scaling relations are written in terms of the power spectrum and this
is realized correctly in N-Body simulations. Therefore we are limited to those variants of scaling
relations that take the shape of the linearly extrapolated correlation function into account (Hamilton
et al., 1991; Smith et al., 2003). We choose to work with (Hamilton et al., 1991) for the purpose of

illustration as the scaling relation here is specified purely in terms of E and suits our purpose better.
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The scaling relation due to (Hamilton et al., 1991) can be written as:

= _ y+0.358y° +0.0236y°

)= 6.7
S0 ) = 001347 10.00200)7 ©.7

where y = &7 (a,1) is the linearly evolved & at scale I. Scales [ and r are related as I = (1 +&(r)).
This scaling relation is likely to be a poor approximation, particularly for large negative indices in
the extreme non-linear regime but should suffice for the purpose of illustration.

Figure 6.11 shows the linearly extrapolated E, the nonlinear E obtained from scaling relations
and also the nonlinear & obtained from N-Body simulations for each of the six simulations listed in
Table 6.1. The plots are for the late epoch corresponding to r,,;; = 8 grid lengths in the model without
a cutoff. We find that in cases with the natural cutoff of kr, there is poor agreement between the
simulated values and the analytical estimate. This is true even for the linearly extrapolated estimate
and we believe it is caused by a few large scale modes with exceptionally high power. Simulations
with an imposed cutoff agree well with the analytical predictions at scales where E < 10, though
there is some divergence at larger scales. Given that the disagreement occurs for the Al and Bl
simulations and can be seen in E as well as S3, but there is no serious disagreement for simulations
A2, A3, B2 and B3, we feel that our interpretation is correct. Further, we may claim that the method
outlined for estimating the effect of box size in the linearly extrapolated E, S3, as well as the nonlinear

E works fairly well, at least in the weakly non-linear regime.

6.4 Summary & Conclusions

In the present chapter we have studied the effects of a finite box size in cosmological N-body sim-
ulations on higher moments. Using the formalism which was developed in Chapter 4 we gave the
expressions for corrections in Skewness and Kurtosis. We have presented the results of a set of cos-
mological N-body simulations which we have carried out to understand the effects of finite box size
on physical quantiles. We have compared the theoretical estimates of the average two point correla-
tions function, Skewness and number density of haloes and found a good agreements between these.

In this chapter we have also studied the effects of finite box size in cosmological N-body simulations
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Figure 6.11: The left and right panels in this figure show the linear (solid line) and nonlinear (dot-
dashed line) & average two point correlation functions from the simulations and estimated using the
HKML procedure for models A1,A2,A3 and B1,B2,B3 respectively The first, second and third rows
are for the models with k. = ks (A1, B2), k. = 2k (A2, B2) and k. = 4ky (A3, B3) respectively.
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on pair velocity and nonlinear scaling relations.

The main conclusions of our present study may be summarized as follows:

e We have extended formalism for estimating the effects of a finite box size beyond the second
moment of the density field. We have given explicit expressions for estimating the Skewness

and Kurtosis in the weakly nonlinear regime when a model is simulated in a finite box size.

e We have tested the predictions of our formalism by comparing these with the values of physical
quantities in N-Body simulations where the large scale modes are set to zero without changing

the small scale modes.

e We find that the formalism makes accurate predictions for the finite box size effects on the

averaged two point correlation function E and Skewness.

e We find that the formalism correctly predicts all the qualitative features of the mass function
of a model simulated in a finite box size. In this case, we do not find a good quantitative match

when the Press-Schechter mass function is used.

e We studied the effects of a finite box size on relative velocities. We find that the effects on

relative velocities mirror the effects on &,

e We argue that the formalism we have proposed for estimating corrections in the linearly ex-
trapolated amplitude of clustering can be extended to the nonlinear regime with the help of

nonlinear scaling relations.
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