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Chapter 1

Introduction

Chapter Summary: This chapter serves as the introduction to the thesis, and also to the over-
all problem of electrons strongly coupled to classical degrees of freedom. First we quickly
touch upon the correlated electron problems that emerge from materials physics and out-
line the difficulty in solving them accurately. We then indicate how the ‘adiabatic’ approach,
viewing some of these problems in terms of electrons coupled to annealed classical degrees
of freedom, allows some advance. We motivate our key innovation, within the adiabatic
framework, that allows us to provide detailed solutions to a family of double exchange based
magnetic models. Following this we briefly introduce the problems studied in this thesis. We
end with a discussion of how the adiabatic approach can be extended to handle phonons and
orbital degrees of freedom.

1.1 Correlated systems: minimal models

The study of electron correlations define a frontier in condensed matter physics and encom-
passes materials like high T



superconductors, heavy fermions, the manganites, and the two
dimensional electron gas. The underlying models involve electrons directly interacting via
Coulomb (or Hubbard) interactions, or coupled to local moments via Kondo coupling, or to
phonon degrees of freedom (as in the Holstein model). The strong coupling many body prob-
lems that arise in these models are rarely ‘exactly solvable’, except possibly in one dimension,
and are beyond the reach of standard perturbative techniques. The tools to handle such sys-
tems include finite size numerical techniques like exact diagonalisation or quantum Mote
Carlo, or methods like dynamical mean field theory. The presence of strong correlations itself
presents a formidable problem, and disorder, which often has a non trivial effects in a cor-
related system, further complicates it. Let us take a look at some models where correlations
and disorder are both relevant. Each of the following models, and areas of phenomenology,
have a vast literature, and we provide only the briefest introduction to these subjects.

Hubbard model

The ‘clean’ version of this model was proposed originally for studying band ferromagnetism
(as in Fe). The recent focus is more on the Mott transition in the model, and the properties of
doped Mott insulators, because of its possible relevance to the high T



materials.
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2 Introduction

If h�2
i

i = �

2, then depending on �=t, U=t and electron density (n) a variety of phenomena
can arise. In the clean limit there can be various magnetic phases, a Mott insulating phase
at strong coupling and half-filling, and (possibly) non Fermi liquid signatures in the doped
Mott insulator. The interplay of disorder with correlation effects is not well understood, and
leads to the area of “Anderson-Mott” phenomena, where interactions and disorder mutually
enhance the tendency towards electron localisation. Despite intensive work on the Hubbard
model over the last four decades there is no consensus on the detailed phase diagram, or the
nature of the metallic phase at strong coupling.

Kondo lattice

This model serves as the starting point for heavy fermion physics, and involves localised (f)

electrons coupled to itinerant s-p-d electrons. The physical effects involve the interplay of
Kondo quenching of the local moments, tending to generate a non magnetic ‘heavy fermion’
liquid, and conduction electron mediated RKKY interaction between local moments which
prefers a magnetically ordered state.
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In the clean limit there is a competetion between the Kondo effect, and the RKKY magnetism.
Tuning this competetion, for example by pressure or a magnetic field, can lead to a quantum
critical point (QCP) and associated non Fermi liquid (NFL) behaviour. There are also many
instances of an unconventional superconducting state at low temperature.

The presence of disorder in these systems can generate NFL behaviour even away from
the QCP, presumably because a fraction of the local moments ‘survive’ to low temperature
and lead to anomalous fluctuations.

Holstein model

The coupling of electrons to phonon degrees of freedom is the origin of pairing in the ‘tradi-
tional’ superconductors. At commensurate fillings, electron-phonon pairing can also lead to
charge order/charge density waves (CDW). The most dramatic strong coupling effect, how-
ever, is the polaronic instability (or self trapping). In that case the presence of an electron at
a site creates a large lattice distortion, trapping the electron, which self-consistently sustains
the distortion.
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For “quantum” phonons, with !
ph

=

p

K=M, the last three terms in H can be written as:
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At finite !

ph

and strong coupling the electrons do not remain spatially localised but form
a narrow band polaronic ‘metal’ with large effective mass. In the adiabatic, !

ph

= 0, case,
however, the particles are indeed spatially localised, leading to an insulating phase. Disorder
in these systems strongly enhances the localising tendency, and also disrupts the charge order
(by acting like a random field).

Two dimensional electron gas

The two dimensional electron gas (2DEG) is a vital problem involving the interplay of dis-
order and electron-electron interactions, in particular because disorder has a singular effect
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in two dimension (leading to the absence of a metallic state) while some recent experiments
indicate that interaction effects can actually lead to a metallic regime. The model for such a
system, in the continuum limit, is:

H =

X

k�

k

2

2m



y

k�k� +

Z

drV
imp

(r)�̂(r) +

Z

drdr 0

V

oul

(r - r 0

)�̂(r)�̂(r 0

)

V

imp

is the disorder potential arising from impurities randomly located in the plane, V
oul

is the two body coulomb interaction and �̂((r) =

P

i

Æ(r - r
i

). The phases in this model
include the clean correlated electron liquid, an Wigner crystal, a Wigner glass, and, possibly,
a disordered metallic phase.

Manganites

A minimal model for the manganites needs to involve strong electron-spin coupling as well
as strong electron-phonon coupling, in addition to disorder. Such a model combines features
of some of the problems described above.
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The phases in the model above include ferromagnetic metal, paramagnetic metal/insulator,
as well as charge order. In the real materials the electron-phonon coupling is of the Jahn-Teller
type, so there is an associated angular degree of freedom in the phonon distortion, and an
associated orbital variable for the electrons. There are several metal-insulator transitions in
the model above, driven by varying temperature, electron density, or couplings. There is the
possibility of large magnetoresistance close to the ferromagnet to paramagnet transition. In
addition, parts of the parameter regime involve cluster coexistence, arising from the interplay
of competing ordering tendencies and the presence of disorder.

Summary

The problems above define the ‘agenda’ in correlated electron theory and the materials that
they describe are at the focus of intense experimental study. While much insight has been
gained from efforts over the last couple of decades, none of these problems can be considered
to be ‘solved’. The problems and models that we consider in the thesis are related to the
models above but have a simplifying feature which makes them more tractable and allows
us to study the interplay of interaction effects and disorder in a controlled manner.

1.2 Methodology

What are the tools to handle the problems that we listed out? All the problems above involve
strong coupling and, sometimes, the presence of disorder, and are well beyond the perturba-
tive regime. In the absence of analytical tools, or an inspired guess, the only recourse is to
use numerical methods. A correlated lattice model can be ‘solved’ on a finite lattice by ex-
act diagonalisation (ED), or simulated using quantum Monte Carlo (QMC) techniques. ED,
although exact, is severely size limited due to the exponential growth of the Hilbert space
with system size, while fermion QMC comes up against a ‘sign problem’ at low temperature.
These methods provide a valuable benchmark for approximate methods but by themselves
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are rarely able to provide insight on the thermodynamic limit. New tools like density ma-
trix renormalisation group [1] (DMRG) and dynamical mean field theory [2] (DMFT) have
been developed over the last two decades to handle correlated systems, and have allowed
significant advance. DMRG, however, is restricted mostly to one dimension, while DMFT
formally takes the ‘infinite dimension’ limit mapping on a lattice model to a quantum im-
purity problem. Unfortunately, some physical effects which may be specific to two or three
dimension, and also the presence of disorder, remain inaccessible within these schemes. This
leaves room for an alternate, “real space”, approach that we explore.

1.2.1 The adiabatic limit

Problems where the fermions are coupled to ‘classical fields’, e.g, large S spins, or ‘adiabatic’
phonons, are at an intermediate level of difficulty between purely classical systems and quan-
tum many body problems. In such a situation the quantum degrees of freedom are not di-
rectly interacting, so the difficulty with an exponentially growing Hilbert space is absent, but
“annealing” the classical variables is much more difficult compared to purely classical sys-
tems. We use this approach as our entry point into models of disordered correlated electrons.

This “adiabatic approximation”, whereby some degrees of freedom are treated as clas-
sical, is not novel. Several problems have been solved in the past by making this approxi-
mation, e.g, in electron-phonon systems [3], or, in a different context, in the Car-Parrinello
method [4], handling coupled electronic and ionic degrees of freedom. The recent interest
lies in the application of this approach to several strong coupling lattice fermion models, and
some degree of success in understanding complex materials. Millis and coworkers [5] stud-
ied electrons coupled to classical spin and lattice (‘phonon’) degrees of freedom, to construct
an initial theory of the manganites using DMFT. The approach was taken much further by
Dagotto and coworkers [6] using ‘real space’ Monte Carlo techniques to study ordering phe-
nomena, phase coexistence, and disorder effects in a large family of correlation models per-
tinent to the manganites. The method has been used extensively also to explore magnetism
in double exchange (DE) based models [7]. For diluted magnetic semiconductors (DMS) too,
much of the physics has been clarified by methods which treat the doped magnetic moment
as classical [8].

1.2.2 Monte Carlo methods

Although the adiabatic limit simplifies the many body problem by casting it in the form of
“non interacting” fermions in the background of classical variables, fxg say, determining the
distribution Pfxg involves an expensive computation. In the absence of any small parameter
to further simplify the problem, computing Pfxg requires iterative diagonalisation [6] of the
fermion Hamiltonian and, for an N site system, the computation time, �

N

, increases as N4.
We will discuss the standard exact diagonalisation based Monte Carlo (ED-MC) in chapter
3, here we just note that the accessible sizes, N � 100, within ED-MC, severely limits the
ability of the method to resolve the outstanding issues relating to transport, metal-insulator
transitions, and the effect of disorder in correlated systems.

There have been some attempts at overcoming the severe finite size constraint in ED-
MC. (i) Instead of exact diagonalisation, it has been proposed that the energy of fermions
in the classical background can be estimated by moment expansion of the density of states
[9, 10]. This, in principle, allows access to N & 10

3, although there seems to have been no
exploration of the method beyond the simple double exchange model. (ii) A ‘hybrid’ Monte
Carlo method, using dynamical evolution of the classical variables, has been tried out [11]
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for a model of competing DE and superexchange, but no results have been reported beyond
the magnetic phases.

This is where our method allows an advance. We have proposed a scheme [12], in the
context of double exchange based models, where the energy associated with the spin config-
uration can be approximated by an explicit classical Hamiltonian with couplings determined
from a solution of the fermion problem. This not only allows us to reasonably reproduce the
“exact” results in the clean double exchange model, it goes far beyond, in handling strong
disorder, as well as the problem of nanoscale phase coexistence - quite beyond the reach of
“exact” methods.

1.2.3 Transport theory

Once the annealing problem is solved, and generates the relevant equilibrium classical con-
figurations, the electronic response functions have to be computed by solving the Schrodinger
equation in these backgrounds. The backgrounds are typically ‘disordered’, but unlike the
canonical Anderson disorder problem, there are non trivial spatial correlations between the
annealed variables. This implies that standard analytic methods of disorder average, em-
ployed in localisation studies, are not useful. We use the Kubo formula, including an ex-
trapolation scheme described in chapter 2, to compute transport coefficients, and explicitly
average over the annealed disorder configurations. Chapter 2 sets out the scheme in detail,
and a short paper [13] provides some results of the method in the context of simple quenched
disorder.

1.3 Thesis problems

The transport calculation method, chapter 2, and our Monte Carlo strategy, have been used
to study the following problems in the thesis.

1.3.1 Double exchange models

While the Kondo lattice model (KLM) with antiferromagnetic coupling between conduction
electrons and the (quantum) local moment is the starting point for heavy fermion physics,
the ferromagnetic version, with large J=t, defines the double exchange (DE) model. The
coupling arises from Hunds rule in real materials and is the origin of ferromagnetism in
several transition metal oxides. If the Kondo effect is not relevant, as for a ferromagnetic
coupling or a large S spin, the local moment can be treated as classical. Incorporating a
possible direct AF superexchange, these systems can be modelled by:
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It is usual to assume J
H

=t ! 1. The ferromagnetism in this model arises from the min-
imisation of the carrier kinetic energy in a fully spin polarised state. An estimate of the
transition temperature, or transport properties, however, is non trivial since it involves the
‘excited states’ of the magnetic system, which do not have any translational order (and make
the electron problem difficult to solve). In the presence of J

AF

several new phases can arise
depending on the AF coupling and electron density. Our basic strategy is discussed in detail
in chapter 3, and also appears in the associated preprint [12].
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1.3.2 Metal-insulator transitions

An amorphous system, with strong structural disorder enhanced by electron-phonon cou-
pling. would have an insulator-metal transition with increasing carrier density, as the Fermi
level moves past the mobility edge. If, additionally, there were magnetic degrees of freedom
in the problem which freeze into a random (spin glass) state, the effective disorder seen by
the electrons would be further enhanced, leading to stronger localisation. However, unlike
structural disorder, spin disorder can be ‘tuned’ by an applied magnetic field, leading to a
possible field driven insulator-metal transition.

Although such a possibility may seem artificial, recent experiments on amorphous a-GdSi
demonstrate a magnetically tuned IMT in a strongly disordered electron system. We discuss
this in chapter 4, and the related paper is [14].

1.3.3 Disordered magnets

The double exchange model incorporating the effect of structural disorder serves as the sim-
plest model for studying the interplay of quenched and annealed disorder. In contrast the to
clean DE model, the disordered model has a thermally driven metal-insulator transition, a
coherent to incoherent crossover in its optical response, and also serves as a simple example
of inhomogeneous ‘freezing’ into a magnetic state, chapter 5 and [15].

1.3.4 Phase coexistence

The presence of competing interactions can lead two a first order phase transition between
two ordered phases, with the possibility of both the phases coexisting over a parameter
regime. For electron systems this implies phase separation into regimes with different elec-
tron density and differing kinds of long range order (ferro and antiferro, say). In the presence
of disorder the ‘macroscopic’ phase separation is converted to meso/nanoscale spatial coex-
istence of the two kinds of phases. If one of the phase is ‘metallic’ and the other ‘insulating’,
then the coexistence phase would involve percolative transport. If, additionally, the phases
respond to a magnetic field, then there is the possibility of large magnetoresistance. This is
discussed in chapter 6 and [16].

1.4 Further work

While the adiabatic approach allows an entry point for a class of disordered interacting
problems, and the Monte Carlo strategy devised by us allows detailed solution of double
exchange based models, a number of theoretically interesting and experimentally relevant
models still remain beyond reach. The most prominent example is that of phonon physics
and lattice polarons (and its interplay with magnetism, as in the manganites). Our efforts
to find an explicit classical Hamiltonian for these models was not successful. However, we
could devise another strategy, essentially simplifying the fermion energy calculation during
the Monte Carlo, and this forms the basis of a ‘travelling cluster approximation’ [17]. We
have extensively explored this method in the recent past [18, 19, 20] but these problems are
outside the scope of this thesis.

We feel that a combination of the strategies already developed by us with an approximate
handling of non adiabatic corrections should make the presnt approach useful for a wide
range of experimentally relevant systems.



Bibliography

[1] S. R. White, Phys. Rev. Lett. 69, 2863 (1992), see Karen Hallberg, cond-mat 0303557, for a
recent review.

[2] Antoine Georges, Gabriel Kotliar, Werner Krauth and Marcelo J. Rozenberg, Rev. Mod.
Phys. 68, 13 (1996). For recent reviews see, Tudor Stanescu and Gabriel Kotliar, cond-mat
0404722, Antoine Georges, cond-mat 0403123.

[3] A.B. Migdal, Sov. Phys. JETP 7, 996 (1958), V.V. Kabanov and O.Y. Mashtakov, Phys. Rev.
B 47, 6060 (1993).

[4] R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

[5] A. J. Millis, B. I. Shraiman, and R. Mueller, Phys. Rev. Lett. 77, 175 (1996).

[6] See e.g, S. Yunoki, et al, Phys. Rev. Lett. 80, 845 (1998), S. Yunoki, T. Hotta, and E. Dagotto,
Phys. Rev. Lett. 84, 3714 (2000).

[7] M. J. Calderon and L. Brey, Phys. Rev. B 58, 3286 (1998), Y. Motome and N. Furukawa, J.
Phys. Soc. Jpn. 68, 3853 (1999).

[8] G. Alvarez, M. Mayr, and E. Dagotto, Phys. Rev. Lett. 89, 277202 (2002).

[9] Yukitoshi Motome and Nobuo Furukawa, J. Phys. Soc. Jpn. 72, 2126 (2003).

[10] Y. Motome and N. Furukawa, J. Phys. Chem. Solids, 63, 1357 (2002).

[11] J. L. Alonso, et al., Nucl.Phys. B 596, (2001) 587-610

[12] Sanjeev Kumar and Pinaki Majumdar, cond-mat 0305345.

[13] Sanjeev Kumar and Pinaki Majumdar, Europhys. Lett. 65, 75 (2004)

[14] Pinaki Majumdar and Sanjeev Kumar, Phys. Rev. Lett. 90, 237202 (2003)

[15] Sanjeev Kumar and Pinaki Majumdar, Phys. Rev. Lett. 91, 246602-1 (2003)

[16] Sanjeev Kumar and Pinaki Majumdar, Phys. Rev. Lett. 92, 126602 (2004)

[17] Sanjeev Kumar and Pinaki Majumdar, cond-mat 0406082.

[18] B. Poornachandra Sekhar, Sanjeev Kumar and Pinaki Majumdar, cond-mat 0406083.

[19] Sanjeev Kumar and Pinaki Majumdar, cond-mat 0406084.

[20] Sanjeev Kumar and Pinaki Majumdar, cond-mat 0406085.



8 BIBLIOGRAPHY



Chapter 2

Electronic Transport with Structural
and Magnetic Disorder

Chapter Summary: In this chapter we establish our basic transport calculation methodol-
ogy. We employ the Kubo formula, based on the exact eigenfunctions and eigenvalues of the
disordered electron problem, to compute the low frequency conductivity on the scale of the
typical finite size gap in the problem. Systematic exploration of the size dependence of the
response allows us to obtain the ‘d. c. conductivity’ by extrapolation. We try out the method
on (i) the standard ‘Anderson disorder’ problem, to benchmark our method, and then map
out the transport regimes and metal-insulator transitions in (ii) a model of magnetic scatter-
ing and (iii) the combined effect of structural and magnetic disorder. The method developed
in this chapter is used in all the following chapters when considering electron motion in the
presence of quenched or annealed disorder. Some of the results in this chapter have been
published in Europhys. Lett. 65, 75 (2004).

2.1 Introduction

The most commonly studied case of localisation pertains to non interacting electrons in the
background of structural disorder. There is a large body of work [1, 2, 3, 4], analytical and
numerical, as well as experimental studies, that have focused on this problem. The principal
qualitative result of these investigations is that in one and two dimension all electronic eigen-
states are localised for arbitrarily weak disorder, while in three dimension we need a critical
disorder for complete localisation. In three dimension, at a given disorder, all states beyond
an energy �



of the band center are localised and the system is metallic or insulating depend-
ing on whether the Fermi level, �

F

, lies in the region of extended states or localised states.
The ‘mobility edge’, �



, collapses to the band center as the disorder is increased, driving the
Anderson metal-insulator transition (MIT).

The presence of magnetic moments in a metal brings in several new effects, depending on
the strength of electron-spin coupling (J

0

), the concentration of moments (n

mag

), the extent
of disorder, and the ‘character’ (small or large S) of the moment.

In the ‘quantum limit’, 2S � 1, and for antiferromagnetic coupling, the basic physics is
contained in the Kondo effect. For n

mag

� 1, the magnetic moments act as ‘Kondo impuri-
ties’ whose effects [5] are now well understood. For n

mag

� 1, i.e, the concentrated Kondo
limit, there can be various phases depending on electron-spin coupling and disorder. The



10 Electronic Transport with Structural and Magnetic Disorder

ground state could be a non magnetic ‘heavy Fermi liquid’ [6], or a spin glass[7], or a mag-
netically ordered state [8]. The physics of these Kondo lattice, with quantum spins, is a vast
area of research. In this chapter, however, we will avoid the issues of heavy fermion physics
and focus instead on electron-spin systems involving “large S”, i.e, effectively ‘classical’ mo-
ments.

For classical moments also, the physical effects vary depending on n
mag

, electron density,
J

0 and the extent of disorder. A wide variety of magnetic systems [9, 10, 11, 12, 13, 14, 15, 16,
17] are described, to a first approximation, by electrons locally coupled to d or f moments,
with 2S � 1, and moving in a structurally disordered background. The magnetic ground
state could be ferromagnetic, or a more complicated ordered state, or a spin glass. Trans-
port often involves insulator-metal transitions and colossal magnetoresistance. The simplest
Hamiltonian capturing these effects is:

H = -t

X

hiji;�



y

i�



j�

+

X

i�

(�

i

- �)n

i�

- J

0

X

�

�

�

:S
�

(2.1)

For simplicity we consider a one band tight binding model, with nearest neighbour hop-
ping on a simple cubic lattice. The random on site potential, �

i

, is uniformly distributed
between ��=2. The sites R

�

are a subset of the cubic lattice sites, R
i

, and correspond to
the magnetic ‘dopant’ locations. Even with this simple model there are four dimensionless
parameters in the problem. These are disorder �=t, magnetic coupling J 0S=t, electron den-
sity n (controlled by �), and the ‘density’ of moments n

mag

. We will eventually study the
n

mag

= 1 case, but retain a more general structure right now. We absorb S in our magnetic
coupling J 0, assuming jS

i

j = 1.
Real materials have band degeneracy and additional interactions but the basic physics of

several currently interesting materials arise as limiting cases of the model above.

� The II-VI diluted magnetic semiconductor [9, 10, 11] (DMS) Ga
1-x

Mn
x

As, exhibiting
high ferromagnetic T



, correspond to n
mag

� 1, J 0=t � 1, weak disorder, and low
electron density, n < n

mag

.

� The Eu based magnetic semiconductors [12, 13], EuB
6

etc, involve n
mag

= 1, since
every Eu atom has a moment, J 0=t� 1, low carrier density, and possibly weak disorder.

� The ‘colossal magnetoresistance’ (CMR) manganites [14], specifically La
1-x

Sr
x

MnO
3

,
involve n

mag

= 1, J 0=t � 1, high electron density, and moderate ‘effective disorder’.
To describe the more strongly resistive manganites, the Ca doped systems, say, one
requires additional electron-phonon interactions.

� The amorphous magnetic semiconductor [15, 16], a-Gd
x

Si
1-x

, corresponds to J 0=t� 1,
�=t� 1, and n

mag

� n � O(0:1).

� Finally, the traditional metallic f electron magnets [17], correspond to n
mag

= 1, and
moderate to strong J 0.

The focus in the materials above is often on magnetism rather than localisation effects.
However, many of them have rather large resistivity in the paramagnetic phase, and a-GdSi,
for example, shows a metal-insulator transition at T = 0 itself, on lowering carrier density.
Since there is no direct spin-spin interaction in these systems, the local electron-spin coupling
controls both the magnetic properties and the character of the electronic state.

The intimate coupling between charge transport, localisation effects, and magnetism in
these systems suggest that we need to look beyond the traditional boundaries separating
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‘magnetism’ from transport and localisation studies. A complete study of electronic resis-
tivity as a function of temperature, for any of the materials above, requires a solution of the
magnetic problem first. Since the moments are assumed to be classical, the electrons can be
imagined to move in a static background comprising the (quenched) structural disorder and
annealed spin disorder. Evaluating the distribution of the annealed disorder is a non trivial
problem, particularly in the strong coupling (large J 0) context that is experimentally relevant.
We will touch upon this in the next section, but this chapter is concerned with transport
and localisation effects in the fully spin disordered phase. In this limit, we will present a
comprehensive discussion of the resistivity arising from the interplay of structural disorder
and ‘paramagnetic’ scattering, and map out the metal-insulator phase diagram in terms of
electron density, disorder and magnetic coupling.

There have been some studies of electronic transport in the background of random spins
and structural disorder, acting independently or together. Among these, the Anderson lo-
calisation problem itself has been extensively studied, via perturbation theory [18], self-
consistent schemes [19], numerical techniques [20], and mapping to a field theory [21]. Most
of the qualitative issues in this context are essentially settled. Weak magnetic scattering in a
structurally disordered system has been studied [22, 23] in the early days of weak localisation
(WL) theory to clarify the ‘dephasing’ effect of electron spin flip on quantum interference. In
the opposite limit of strong coupling, corresponding to double exchange, localisation effects
have been studied [24] considering both magnetic and structural disorder.

These efforts still leave a large and interesting part of � - J

0 space unexplored. To give a
few examples, there is no discussion of the following:

� the resistivity from purely magnetic scattering, as J 0 rises through the perturbative
regime to double exchange: this is the classic problem of paramagnetic scattering in
‘clean’ magnets, studied earlier at weak coupling [25, 27].

� the effect of spin disorder on the Anderson transition, i.e, how the ‘anti-localising’ ef-
fect of spin flip scattering, at weak disorder, evolves into an insulator-metal transition
(IMT). This is an instance of Anderson transition with broken time reversal symmetry,
and

� the wide ‘middle’, where the effect of neither � nor J 0 is perturbative and their contri-
bution to the resistivity is not additive (i.e, violates Mathiessens rule). This is the regime
relevant to DMS, CMR materials, and amorphous magnetic semiconductors.

The next section describes the transport calculation in detail. Following that we present
results on transport, successively, in the structural disorder problem, the magnetic disorder
problem, and the simultaneous effect of both.

2.2 Computational scheme

Although we will work with random uncorrelated spins, viewing the magnetic disorder as
quenched, let us highlight how the ‘true’ spin distribution can be evaluated, and the limit
where the background can be considered random. Following that we describe our transport
calculation method.

2.2.1 The spin distribution

The ‘structural’ variables �
i

are quenched, and have a specified distribution, but the spin
orientations S

i

are not known a priori. The system chooses a spin configuration, at T = 0,
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to optimise the total energy. To calculate the ‘true’ ground state properties, or finite temper-
ature transport, we need to solve for the spin distribution first and then evaluate electronic
properties in these spin background. Denoting the full spin configuration as fS

i

g, the spin
distribution PfS

i

g is given by:

PfS
i

g = Z

-1

Tre

-�H

Z =

Z

DS
i

Tre

-�H (2.2)

where Z is the full partition function of the system, and the ‘trace’ is over fermionic variables.
Equivalently, the effective classical ‘Hamiltonian’ controlling the Boltzmann weight for spins
is:

H

eff

fS
i

g = -

1

�

log Tre

-�H (2.3)

H

eff

is the fermion (free) energy F
el

in the background fS
i

g.
To make more sense of the formal expression above, consider J 0=t� 1. In this case we can

expand the fermion (free) energy in powers of J 0. For a non disordered system this leads to
the standard RKKY coupling [27] between the classical spins, while the presence of structural
disorder, leads to a ‘bond disordered’ RKKY model: H

eff

�

P

ij

J

ij

S
i

:S
j

;where the exchange

J

ij

are � J

02

�

ij

the �
ij

being the non local spin response function of the disordered, J 0 = 0,
electron system. Having obtained the effective spin Hamiltonian, the transport properties
are to be calculated by considering electron motion in the backgrounds f�

i

;S
i

g where the fS
i

g

are equilibrium configurations of H
eff

for a specified realisation of disorder f�

i

g.
At strong coupling, i.e, large J 0, the fermion trace cannot be analytically evaluated, and

it is no longer possible to write an explicit spin Hamiltonian. We need special techniques to
anneal the spins. The magnetic order and the complete transport properties in such (disor-
dered) Kondo lattice models will be discussed in the following chapters.

Uncorrelated spins: The complications of the magnetic problem can be avoided if we
assume a spin distribution. The simplest distribution one can assume corresponds to uncor-
related random spins. This is physically relevant in two limits.

(i) At sufficiently high temperature, compared to the magnetic ordering scales in the prob-
lem, the spins are essentially randomly fluctuating, with only short range correlation. The
magnetic ordering scale for J 0=t � 1 is � f

1

(n)J

02

=t, while for J 0=t � 1 the ordering scale
is � f

2

(n)t, where f
1

and f
2

are electron density dependent dimensionless coefficients and
f

max

2

� 0:1. Compared to the typical Fermi energy, � zt, where z is the coordination number
of the lattice, these scales are all small. We use a T = 0 formulation for transport, i.e, we do
not use Fermi factors, but given the smallness of T



=�

F

, our results would be relevant even
in the ‘real’ paramagnetic phase.

(ii) Another situation in which a random spin configuration is appropriate is a ‘spin
glass’, likely to occur in strongly disordered systems [28]. There are always short range cor-
relations in a spin glass but if we ignore their effect on transport then at all temperature
the transport in such a system can be described, approximately, in terms of a random spin
background.

2.2.2 Conductivity calculation

In the linear response regime, the Kubo formula can be used to calculate the conductivity of
a system. The general expression [29], involving matrix elements between many body states,
simplifies significantly for non-interacting systems. This ‘Kubo-Greenwood’ result can be
computed purely in terms of single particle eigenfunctions and energies.
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The numerical difficulty with this result lies in implementing it for a finite size system,
where the spectrum is discrete, with gaps O(1=N), with N being the number of sites in the
system. Since the ‘d.c’ conductivity involves transitions between essentially degenerate states
at �

F

, it cannot be calculated with control on small systems. As a result, instead of computing
the ‘Kubo conductivity’ it is more usual to compute the ‘Landauer conductance’,G, of a finite
system coupled to leads [30], and infer the conductivity from the length dependence of G.

We pursue the Kubo approach, indirectly, through a calculation of the low frequency op-
tical conductivity for a L

T

� L

T

� L geometry. The advantage of calculating the conductivity
this way is, (i) it ties in with diagonalisation that one may have to do for the magnetic prob-
lem, and (ii) it allows access to the optical conductivity, without added effort, and can reveal
the significantly non Drude nature of �(!) at strong disorder. The principal disadvantage is,
this scheme cannot be pushed beyond N � 10

3

- 10

4, in contrast to the Landauer approach,
and is therefore not useful for accessing critical properties.

For disordered non interacting systems, the Kubo formula, at T = 0, is:

�(!) =

A

N

X

�;�

(n

�

- n

�

)

jf

��

j

2

�

�

- �

�

Æ(!- (�

�

- �

�

)) (2.4)

with A = �e

2

=h̄a

0

, a
0

being the lattice spacing, and n
�

= �(� - �

�

). The f
��

are matrix ele-

ments of the current operator j
x

= it

P

i;�

(

y

i+xa

0

;�



i;�

- h:), between exact single particle
eigenstates j 

�

i, j 
�

i etc and �
�

, �
�

are the corresponding eigenvalues.
The conductivity above is prior to disorder averaging. Notice that the Æ function con-

straint cannot be satisfied for arbitrary frequency in a finite system. So we can neither calcu-
late the d.c conductivity, �

d

, directly, nor estimate �(!) at some arbitrary externally speci-
fied frequency. However, we can still calculate the ‘average’ conductivity over a frequency
interval �!, defined below, and we use the following strategy to extract the d.c conductivity.

1. The average of �(!) over the interval [0; �!℄ is defined as

�

av

(�!;�;N) =

1

�!

Z

�!

0

�(!;�;N)d! (2.5)

�! can be set independent of N, but we will relate them by fixing: �! = B=N. We
fix B by setting �! = 0:04 for N = 1000, in 3d. Notice, the mean finite size gap is
12=1000 � 0:01 much smaller than �!.

2. �
av

is averaged over N
r

realisations of disorder, to generate �̄
av

(�!;�; L). The ‘noise’
in �̄

av

(�!;�; L) falls slowly, as 1=
p

N

r

. We use N
r

� 100 for the largest sizes, to keep
the computation reasonable, and use a filter to smooth the �(�; L) data over a small
window Æ� at each �.

3. We study the �̄
av

(�!;�; L) for L
T

= 6 and the sequence L = 24 to L = 64 in increments
of 8 and extrapolate:

�

al

(�) = lim

L!1

�̄

av

(�!;�; L) (2.6)

As specified before, �! = B=N. We calculate the conductivity in units of (�e2=h̄a
0

).

To calculate the full, disorder averaged, optical conductivity we use the inversion:

�(!) = �̄

av

(!) +!

d�̄

av

d!

(2.7)

The �(!) results in this chapter are mostly based on a 6� 6� 32 geometry.
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2.3 Transport in the Anderson model

The metal-insulator phase boundary and the critical properties near the transition have been
been extensively studied [18, 19, 20, 21] in the Anderson model. However, the actual resistiv-
ity seems to have received much less attention. As recently pointed out by Nikolic and Allen
[31], there is a wide regime in �, between the Born-Boltzmann end and the scaling regime,
where there are no analytic theories of transport. We study this ‘old problem’ in some detail
because the wealth of existing results provides a benchmark for our method. There are very
few exact results with which we will be able to compare our data in the magnetic scattering
problems.

2.3.1 Global features

The ‘global features’ of transport and localisation in the Anderson model are contained in
Figs.1-3. The data is obtained via the extrapolation procedure described earlier. Fig.1.(a)
highlights the suppression in conductivity with increasing disorder, across the entire band.
The ‘weakest’ disorder in this case,� = 4, is probably already outside the semiclassical Boltz-
mann regime. A naive �2 scaling of the resistivity still works, at the band center, between
� = 4 and � = 8, but the same extrapolated to � = 16, would imply �(16)=�(4) � 16, while
the ratio is actually � 10

3. This figure captures the expected crossover from moderate scat-
tering, roughly following Boltzmann scaling, to localisation as � ! �



� 16:5, the critical
disorder [32] at the band center. It also provides a glimpse of how the ‘mobility edge’ moves
with increasing disorder, better quantified in Fig.3. Note that for data at a specified system
size, L = 16; 32 etc, shown later, the notion of a ‘mobility edge’ does not make sense, and all
we observe is a crossover from small to large conductivity as � is varied. The change in �(�; L)
with L, and the L!1 extrapolation, is crucial for identifying the mobility edge.

The DOS plot, Fig.1.(b), illustrates the band broadening, and in Fig.3.(b) we have com-
pared our band edge energy with earlier CPA results [33]. The (algebraic) average DOS is
featureless and non critical and does not play an interesting role in the problem.

Since the band broadens significantly with disorder, �(�) by itself does not provide the
density dependence of the conductivity. Fig.2 takes into account the shift in � required to
maintain constant density (with increasing disorder) and shows �(n). Our density is de-
fined as average number of electrons per site, so n

max

= 2. Since the model is particle-hole
symmetric we show only the regime n = [0; 1℄.

To get a feel for the magnitude of the conductivity, which we measure in units of �e2=(h̄a
0

),
note that the Mott ‘minimum metallic conductivity’, �

Mott

, at the band center [4], is roughly
� 0:03e

2

=(h̄a

0

). Our dimensionless conductivity �
al

, shown in the figures, can be con-
verted to real units, �

atual

, by using

�

atual

� 100 � �

Mott

� �

al

where we use �
Mott

= 0:03e

2

=(h̄a

0

). The results we show in the present spin degenerate
problem includes a factor of 2 to account for the two spin channels. This is important to
compare with the magnetic scattering problems later. The conductivity per spin channel falls
below � 10

-2 for � & 8. This implies that beyond � � 8, � < �
Mott

in the Anderson model.
The main panel in Fig.3 shows the variation in mobility edge with increasing disorder.

Our error estimates are based on the shift in �


as we change from moderate to zero filtering
of the �̄(�; L) data. We show the data of Economou and Soukoulis [33], for comparison. The
best current result on �



is 16:5, our method yields �


� 17. Our results on the band edge,
Fig.3.(b), match reasonably with earlier CPA based results. Note that while the mobility edge
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Figure 2.1: Panel (a). Variation of conductivity with Fermi energy, and panel (b). density of
states, for several values of disorder, �.
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Figure 2.3: Main panel, (a), shows the variation in mobility edge with disorder. We compare
our results, circles, with earlier work [33], triangles. Inset (b) shows the ‘band edge’, and ()

the fraction of localised states at large �.

has a ‘re-entrant’ behaviour, the fraction of localised states in the band, Fig.3.(c), increases
monotonically with disorder.

2.3.2 Transport regimes

There are tentatively three transport regimes in the Anderson model. These are (i) the per-
turbative Born scattering regime, described by the Boltzmann transport equation and the low
order corrections in (k

F

l)

-1. This corresponds to �=W � 1, where W = 12t. (ii) The wide
intermediate coupling regime �=W � O(1), and (iii) the ‘scaling’ region, � ! �



, near the
MIT. We analyse the data, with increasing �, in the sequence (i)! (ii)! (iii).

(i) Perturbative regime

To leading order, the scattering rate from the disorder is �-1
�

� 2�N(�

F

)h�

2

i

i. The second
moment of the random potential is, h�2

i

i � �

2

=12. Since N(�

F

) � 0:13, at the band center,
Fig.1.(b), the scattering rate, �

�

= �

-1

�

� �

2

=(15t).

The three related quantities which define Boltzmann transport are (i) the scattering rate,
�

�

, defined above, (ii) the (inverse) mean free path a
0

=l � 0:03(�=t)

2 at the band center,
and (iii) the Born-Boltzmann conductivity �

B

� 1:62(�e

2

=h̄a

0

) � (t=�)

2 per spin channel,
again at the band center. In addition the optical conductivity should have the Drude form
�(!) = �

B

=(1+(!

2

=�

2

�

)), and the ‘width’ in the optical conductivity can be checked against
the magnitude of d.c conductivity.

Using the form for �
B

, the conductivity at � = 4, assuming Boltzmann transport, would
be approximately 0:1(�e2=h̄a

0

) per spin channel, i.e � 0:2 in our units including spin degen-
eracy. Our data, Fig.2, gives a value � 0:19 at the band center. The crude Boltzmann scaling
is obvious from the moderate � results in Fig.1 and Fig.2. In Fig.4 we attempt to quantify the
corrections to the Boltzmann result, still staying far from the localisation regime.
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Figure 2.4: Variation of the resistivity, normalised to the Born resistivity, with disorder. The
firm lines are fits of the form 1 + �

1

(n)�

2

+ �

2

(n)�

4. Inset shows the coefficients �
1

; �

2

.

The weak localisation (WL) corrections that arise beyond Boltzmann transport control the
resistivity in one and two dimension. These are quantum interference effects, formally arising
from the ‘Cooperon’ corrections. A similar argument would lead us to believe that in three
dimension [1] the leading correction beyond the Boltzmann results should be Æ� / -(k

F

l)

-1.
Since (k

F

l)

-1

/ �

2 and the Boltzmann conductivity �
B

/ k

F

l, the net conductivity would be
expected to have the form � � �

B

(1 - O((k

F

l)

-2

)), i.e, �(�) � �

-2

(1 - O(�

4

)). In that case,
the resistivity should have a form �(�) � �

B

(�)(1 +O(�

4

)).

Fig.4 shows �(�)=�
B

(�) plotted against�2 for three densities. We avoid too low a density
to keep the scales comparable. The data are fitted to �=�

B

= 1 + �

1

(n)�

2

+ �

2

(n)�

4, upto
�

2

= 49 and then extrapolated to �2 = 81.

There are two notable features: (i) There is clearly a non zero coefficient �
1

(n) so the
equivalent of the WL corrections do not control the leading correction to �

B

in three dimen-
sion. The coefficients �

1

and �
2

are shown in the inset in Fig.4. (ii) The ‘low �’ fit seems to
work reasonably for � . 10, in the sense that �=�

B

. 2. This qualitative correspondence with
the Boltzmann result, even in the regime a

0

=l & 1, has been noticed recently [31].

The first issue has been explored in detail [34] by Belitz and Kirkpatrick who argue that
the standard WL processes do not exhaust the leading corrections to �

B

in three dimension.
According to them, the perturbative expansion for �, in a continuum model, has the form

� � �

B

f1- a(k

F

l)

-1

- b(k

F

l)

-2

log(k

F

l) +O((k

F

l)

-2

)g

where a and b are numerical coefficientsO(1). The WL argument would put a = 0, b = 0.

This form for the correction beyond Boltzmann transport has apparently been observed
for electron mobility in dense neutral gases. The detailed coefficients in this expression would
change in a tight binding model, but the key result about k

F

l dependence should survive.

(ii) Intermediate coupling

The Boltzmann result alongwith the perturabtive quantum corrections is reasonable probably
upto �=W � 0:2 - 0:3, although numerically the fit, in the last section, seems to describe the
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Figure 2.5: The optical conductivity, at band center, for different L . The � values used are
representative of (a) Born scattering and (b) proximity to localisation.

resistivity even upto �=W � 0:75. The scaling regime, where localisation effects become
visible, occurs within about 10% of �



.
Despite the correspondence of our numerical results with an extrapolation of weak cou-

pling theory, there is no analytic framework for calculating the resistivity when the “small
parameter” (k

F

l)

-1

� a

0

=l becomes O(1).
The paramter a

0

=l is O(1) for �=W � 0:5 but the deviation from the Boltzmann result (at
the band center) is only about 25%. This has been pointed out recently by Nikolic and Allen
[31] and probably arises from a fortuitious cancellation of higher order corrections. The self-
consistent theory (SCT) of Vollhardt and Wolfle [19] serves as an interpolating approximation
in this regime. Within the SCT also, the conductivity at band center remains within 20% of
�

B

for � . 8. The deviation from the Boltzmann result grows as we move from the band
center to the band edge as evident in Fig.4.

(iii) Scaling regime

The scaling regime occurs close to critical disorder, within about 10% of �


. The conductivity
in this regime varies as �



-�. This regime has been extensively studied to clarify the critical
properties (see, e.g, [19] and references therein). We have not used a dense enough sampling
in � for discussing the critical behaviour, and our system sizes too are not large enough for
high accuracy calculation of the conductivity in this regime. However, based on results at
� = 16 and � = 17 we can bracket the critical point, as shown in Fig.3. This regime has been
studied in detail using transfer matrix techniques.

2.3.3 Optical conductivity

The optical conductivity �(!) is of intrinsic interest and also plays a role in our method of
determining the d.c conductivity. There are some exact results known on the form of the low
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frequency �(!) in the Anderson model.

1. At weak disorder, when Boltzmann transport holds, the optical conductivity has the
Drude form, �(!) � �(0)=(1+!

2

�

2

), where �-1 / �2 as we already know. For!�� 1

this would give us the form �(!) � �(0)(1 -!

2

�

2

).

2. When the quantum corrections to the d.c conductivity become important the frequency
dependence also picks up a non Drude form. In the intermediate disorder regime, one

expects �(!) � �(0) +O(�

p

!=�), where �(0) already incorporates corrections beyond
the Boltzmann result. In this regime the conductivity rises with increasing frequency,
for frequencies!� �.

3. At the critical point, where the zero frequency conductivity vanishes, �(!) � !

1=3, and
in the localised regime �(!) � !

2.

These results originally obtained through different techniques can be obtained in a unified
way via the self-consistent theory of Vollhardt and Wolfle.

Fig.5 demonstrates the changing character of �(!), at n = 1, as we move from the Boltz-
mann regime (� = 2), to strong disorder (� = 16). We show the data for three system sizes
at each � to illustrate the explicit L dependence in �(!; L). This is important for analysing
the extrapolation needed for �

d

.

There are two effects of changing system size: (i) the �(!) profile itself can change with
evolving system size, over the frequency range of interest, and (ii) larger system size allows
access to (more dependable) low frequency data.

Fig.5.(a), the weak disorder case, reveals that the �(!) profile changes perceptibly with
increasing L, the changes being O(5%). This implies that in our attempt to access d.c conduc-
tivity, the contribution arises not only from lowering the frequency cutoff but also moderate
changes in the �(!) profile. At strong disorder, Fig.5.(b), the profile itself does not change
significantly with L and the key change in the �

d

estimate comes from our ability to access
lower frequencies.

2.3.4 Large L extrapolation

How important is the large L extrapolation to access the d.c conductivity, i.e, what is the error
if we treat the low frequency average �̄

av

(L), at some size L, as the bulk d.c conductivity?
Fig.6 illuatrates the extrapolation based on the sequence fL : 24; 32; 40; 48; 56; 64g, at � = 0,
moving from weak to strong disorder.

In the weak disorder regime, the optical conductivity is ‘flat’ for!� �

-1 so if low enough
frequencies can be accessed (given the finite size gaps), the d.c conductivity can be reasonably
approximated. This is the feature observed at � = 2 in Fig.6. However, in the WL region and
beyond, �(!) has non trivial frequency dependence at low !, as evident in Fig.5.(b). The
corresponding low frequency average has significant L dependence. Since �(!) � �(0) +

O(

p

!), the low frequency average �
av

(L) � �(1) + O(1=

p

L). The data at � = 12; 16 show
a reasonable fit to the square root form. The much stronger frequency dependence in the
strong disorder regime makes a size dependent study imperative.

These results illustrate the work involved in accessing the d.c conductivity, particularly in
the regime of strong disorder, where a small L calculation (at L = 16 say) might overestimate
the conductivity by a factor of 4. This discrepancy worsens as �! �



and a systematic study
of size dependence is vitally important.
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Figure 2.6: The variation of �̄(L) with system size, in a 6�6�L geometry, at various disorder.
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Figure 2.7: Effect of transverse dimension on the large L extrapolation. Carrier density n = 1.
The conductivity obtained by extrapolating the 6� 6� L results are shown as circles on the y
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2.3.5 Effect of the transverse dimension

All the results quoted till now have been obtained via extrapolation on a 6� 6� L geometry.
The 62 cross section was chosen to allow large L to be accessed. However, it is important to
quantify the error involved in chosing a specific transverse dimension L

T

. To this end we
studied the low frequency average �

av

in a sequence L
T

� L

T

� L with L
T

=, 2; 4; 6; 8; 10; 12
and L = 10; 20; 30, for � = 2; 10 and 16, and n = 1. The averaging interval �! was scaled as
1=(L

2

L

T

) in all geometries.

Fig.7 shows �
av

with respect to L-1 for the sequence L
T

specified above. Panel (a). shows
the weak disorder, � = 2 result. Beyond L

T

= 4 all the curves seem to converge to � � 0:70

for L ! 1. The extrapolation from L

T

= 6, obtained using L upto 64, is shown as a circle on
the y axis, and is � 0:68.

For the strong disorder case, Fig.7.(b), the extrapolation for L
T

= 6 is shown to be �

0:001, while the large L
T

data, using L upto 30, suggests that the asymptotic value could
be larger, � 0:002. This suggests that ‘small’ L

T

somewhat underestimates the conductivity
(remember L

T

= 1 is one dimensional, so completely localised), while finite L overestimates
the conductivity. Except very close to the MIT these errors are small for the sizes we use and,
as verified by the phase diagram, even the critical point is located to within 5%.

2.4 Scattering from magnetic disorder

2.4.1 Global features

The effect of weak magnetic scattering on transport is quite similar to that of potential scat-
tering. The effect is contained in the Born scattering rate, �-1

s

/ N(�

F

)J

02

S

2, and the weak
coupling resistivity �(J 0; n) varies as � b

1

(n)J

02, where b
1

(n) is a density dependent coeffi-
cient. However, even at moderate coupling, J 0 � 2, new effects begin to show up in �(�).
The conductivity at half-filling, n � 1, gets suppressed more quickly than would be guessed
based on the Born argument. This deviation, and its evolution with increasing J 0, arises from
a fundamental difference between potential scattering and magnetic scattering on a ‘Kondo
lattice’.

There are in fact two main differences that show up beyond weak coupling. These are visi-
ble when we compare Figs.8-10, with Figs.1-4. (i) The conductivity in the potential scattering
case decreases monotonically (at fixed n) with increase in disorder, vanishing at �



(n), while
in the magnetic scattering case, at a generic density, the conductivity is finite even as J 0 ! 1.
The resistivity ‘saturates’ and there is no metal-insulator transition with increasing J 0, except
in a narrow density window. (ii) The band center, n � 1, is of no particular significance in
the Anderson problem, except �



being largest. In the J 0 problem the response for n � 1 is
dramatically different from that in the rest of the band. There is an MIT at J 0 � 5. These
differences can be understood from an analysis of the strong coupling end.

For J 0=t � 1 it is useful to choose a local quantisation axis at each site, for the electrons,
parallel to the orientation of the spin S

i

. The coupling J 0S
i

acts as a strong local Zeeman
field on the electron. Suppose the hopping term were absent. The two local eigenfunctions
at each site would have spin projections parallel and antiparallel to J 0S

i

, with energy �J 0=2
respectively. The zero hopping problem leads to N fold degenerate levels at �J 0=2. The
‘gap’ J 0 plays a key role at strong coupling. The presence of hopping generates a degenerate
perturbation on the locally aligned states (say), and the electrons can now ‘hop’ with an
amplitude that depends on the orientation of nearest neighbour spins. This mechanism has
been extensively discussed in the context of the double exchange model.
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Figure 2.8: (a). Conductivity as a function of Fermi energy, (b). density of states, for different
values of J 0, in the case of pure magnetic scattering.
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Figure 2.10: Resistivity variation with J 0, for several electron density, from the perturbative
limit to double exchange

The mixing introduced by ‘hopping’ broadens the two levels into bands. For J 0 &W=2 the
broadening due to t does not fill the gap, and the system is insulating at n = 1. For J 0 below this
critical value, J



, say, the DOS at band center is suppressed but finite, and the resistivity is
still very large. In summary, the strong coupling physics of (incipient) band splitting controls
the resistivity close to band center, and creates an essential difference, in terms of J 0 and n,
with respect to standard Anderson localisation.

The saturation in �(J 0) with increasing J 0, over most of the band, occurs because the effect
of large J 0 is absorbed mainly in the band splitting. The effective disorder seen by the electrons
comes from fluctuations in the hopping amplitudes, explained in the next section, and these
are O(t). The ratio of fluctuation to mean hopping is moderate, so the large J 0 limit leads to
a ‘dirty metal’ but no metal-insulator transition. This is unlike the Anderson problem where
the electrons scatter off potential fluctuations whose amplitude grows with increasing �.

From the data in Figs.8-10 we can now identify the different transport regimes.

2.4.2 Transport regimes

(i) Weak coupling: J 0=W� 1

The magnetic scattering rate �
s

is proportional toN(�

F

)J

02, and the weak coupling resistivity
should be expandable in �

s

. The lowest order term is well known, corresponding to Born
scattering, with �(J 0; n) � b

1

(n)J

02. The density dependence is similar to that for potential
scattering. Assuming �(J 0) to be analytic in �

s

, i.e ignoring possible log corrections etc, Fig.11
shows a fit of the form �(J

0

; n) � b

1

(n)J

02

+b

2

(n)J

04 to the low J

0 resistivity. The J 02 character
dominates upto J 0 � 2, as one can see also in the �(n) plot in Fig.9, beyond which the quartic
term becomes important. We do not know if the coefficient of the quartic term has been
analytically calculated, but the sign of this term is crucial, and is density dependent, as we
discuss next.
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(ii) Intermediate coupling: J 0=W � O(1)

As is obvious from the data in Fig.9-10, the resistivity saturates with increasing J 0, over most
of the band. The exception is the vicinity of n = 1, and the lower edge of the band.

This suggests that the correction to the Born resistivity is negative for n away from n = 1,
and changes sign as n ! 1. Fitting the data to �(J 0; n) = b

1

(n)J

02

+ b

2

(n)J

04, the coef-
ficient b

2

(n) illustrates the crossover from saturation to escalation, as we move across the
band. Fig.11 shows the fit to this form and the coefficients are shown in the inset. The ‘Born’
coefficient is positive throughout the band, without significant density dependence in the
density interval shown. The quartic coefficient changes sign, from positive to negative, as n
is lowered from 1:0 to 0:74.

A confirmation of saturation or escalation cannot of course be obtained from a low order
expansion in J 02, but even the ‘perturbative’ coefficient provides a hint of strong coupling
physics. It also suggests a smooth evolution from weak to strong coupling.

(iii) Double exchange: J 0=W!1

In the double exchange limit the J 0 scale acts as a ‘constraint’ on the electron spin orienta-
tion and no longer directly affects physical properties, the only effect is to renormalise the
chemical potential. The mapping of the J 0=t ! 1 problem to a ‘spinless fermion’ problem
with hopping dependent on nearest neighbour spin orientation has been widely discussed
[35]. Transformed to spinless fermions, which correspond to original electron states with spin
projection ‘locked’ parellel to the local quantisation axis, S

i

, the Hamiltonian becomes:

H =

X

hiji

t

ij



y

i



j

=

X

hiji

t̄

y

i



j

+

X

hiji

Æt

ij



y

i



j

(2.8)

The t
ij

being the spin orientation dependent hopping amplitude specified earlier. We can
split it into the mean (uniform) hopping amplitude, t̄, and the fluctuation Æt

ij

.
In the ‘extreme’ paramagnetic phase of this model, the distribution of hopping integrals is

exactly known. The spins are independently distributed on a sphere so the t
ij

can be worked
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out. There is no obvious small parameter, since both the mean value of hopping, t̄, as well

as the fluctuation, �t =

q

hÆt

2

i, are / t. However, the ratio �t=t̄ � 1=3. Numerical work

by Li et al. had demonstrated that less than 0:3% of states in the band are localised under
this condition. It was not clear whether the resistivity at the band center, n = 0:5, could
be described within a Boltzmann approach. Narimanov and Varma [36] have demonstrated
that the mean free path emerging from the Boltzmann calculation is l=a

0

& 8 so the method
is self-consistent.

It seems now that despite the localisation effects as n ! 1 and n ! 0, resistivity over
much of the band can be understood within a effective ‘weak coupling’ approach. The resis-
tivity is � (0:1 - 0:2)�

Mott

at the band center according to our calculation. The resistivity
is also ‘particle-hole’ symmetric, now within the lower band, but notice that this is cleanly
visible only at very large J 0=t.

(iv) Virtual orbital mixing: large finite J 0

As we move to finite J 0 from the double exchange limit, the two bands still remain split (down
to J 0=t � 5) but there is a virtual admixture that is introduced. To access properties in this
regime we need to use a two orbital formulation, with the orbital energies still separated by
a large gap � J

0. The chemical potential remains in the lower band. The two orbital model,
written in terms of electronic states with local quantisation axis, has the form:

H =

X

ij

t

��

ij



y

i�



j�

- �

X

i

n

i

-

J

0

2

X

i

(n

i�

- n

i�

) (2.9)

We have not seen a Boltzmann calculation of transport in this regime, but using the two
orbital formulation it might be possible to set up such a scheme. The resistivity decreases
as we move down from large J 0, so using the correct ‘basis’ the transport may be accessible
within a Boltzmann approach (since the double exchange limit is itself so accessible). The
increase in conductivity, Æ�(J 0), as we move to lower J 0, is found to be proportional to 1=J 0. A
perturbative correction to the large J 0 result, within a diagrammatic scheme yields the same
answer.

(v) Behaviour near band tails

Spin disorder by itself cannot localise states in the center of the band, since �t=t is not large
enough. However at the band tails, i.e n close to 1 or 0, the kinetic energy is small and a small
fraction of states can still be localised. This was estimated by Li et al. [24] to be . 0:5% of
the total number of states. We do not know if any analytic approaches have been explored in
this localisation problem with ‘hopping disorder’. This regime would be relevant to the low
doping magnetic semiconductors, where there is also the possibility of carriers trapping into
spin polaronic states.

2.4.3 Optical conductivity

The optical conductivity confirms the trends seen in the d.c conductivity. Fig.12 shows �(!)

at J 0 = 1 and J 0 = 4, weak and ‘strong’ coupling respectively, at the center (n = 0:5) and edge
(n = 1) of the lower band.

At weak coupling, over the frequency range shown, �(!) is larger at n = 1, the center
of the full band, compared to n = 0:5. The scattering rate is �

s

= 2�N(�

F

)J

02 which at the
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Figure 2.12: Optical conductivity in the (a) weak and (b) moderate magnetic scattering
regimes at two densities.

band center is � 0:75. If �(!) follows the Drude form then �(�
s

)=�(0) should be � 0:5, which
is consistent with Fig.12.(a). By J 0 = 4, the trend has reversed. The n = 1 case is almost
insulating, with �(0) ! 0, while the conductivity at the (lower) band center is finite and
essentially flat on the scale considered. This trend gets amplified as we go to even larger J 0.

2.5 Combined structural and magnetic disorder

2.5.1 Global features

In the presence of both structural and magnetic disorder it is not possible to show the full
density dependence of transport properties compactly, so we provide two generic ‘cross sec-
tions’ in Fig.13 at n = 0:26 and n = 1:00. In addition to the features already noted for
potential scattering and magnetic scattering, there are several novel features that arise.

� For weak J 0 and moderately large �, magnetic scattering actually weakens localisation
effects, as evident from the intermediate �, small J 0 data in Fig.13,15,16.

� At even larger �, where the system would have been Anderson localised, magnetic
scattering actually leads to a metal. The critical disorder �



(n) shifts to a larger value
�



(n; J

0

), see phase diagrams in Fig.14.

� At large J 0 now, the system can go insulating depending on the extent of structural
disorder. The resistivity could ‘escalate’ rather than saturate with increasing J 0. This is
in contrast to the generic behaviour in the ‘clean’ magnetic system.

� The ‘additivity’ of magnetic and structural scattering holds only over a very limited
range in � and J 0.

The major features can be easily motivated after we discuss the different transport regimes
in this problem. Primarily, (i) The metallic regime ‘expands’ as magnetic scattering is turned
on in the structural disorder problem, it takes a larger structural disorder to localise. (ii) At
large J 0, the ‘spinless fermion’ limit, the critical structural disorder needed is less than at
J

0

= 0, since structural and magnetic disorder ‘add up’. This is visible in Figs.14.(a-c). The
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Figure 2.13: Global behaviour of the resistivity at n = 0:26 and n = 1:0
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resulting ‘nose’ is ubiquitous, except at n = 1. (iii) At, and near, n = 1 the bands splitting
leads to an insulating state at J 0 � 5, so the metallic phase is bounded both in J 0 and �.
However, there is an interesting re-entrant structure, which we will discuss later.

The detailed discussion in the rest of this section is focused on n = 0:5, where the response
is generic of the entire band (see the phase diagrams in Fig.14).

2.5.2 Transport Regimes

There are tentatively five different transport regimes in the problem, and, except for (i) below,
all of them are beyond the reach of standard transport theory. These are: (i) the weak scatter-
ing regime, where Mathiessens rule holds, (ii) spin flip correction to weak localisation (WL),
with the � dependence showing WL corrections and spin flip increasing the conductivity,
(iii) spin dephasing driven insulator-metal transition (IMT), occuring over a window in �,
(iv) the disordered double exchange (DE) limit, and (v) the intermediate coupling ‘metal’.
We analyse our data in the spirit of this classification.

(i) Weak scattering: Mathiessens rule

The regime of weak structural disorder and weak electron-spin coupling can be understood
in terms of additive Born scattering, with the net scattering rate, �(�; J 0) � a

1

�

2

+ b

1

J

02.
The resistivity is additive and both contributions are described by lowest order perturbation
theory. This corresponds to the bottom left hand corner in Fig.15.(a). The ‘parallel’ curves in
Fig.16.(a) for � upto 4, and the regime J 0 � 3 broadly identify the domain of ‘Mathiessens
rule’. The net resistivity in this regime, Fig.16.(a), is < 0:1�

Mott

, i.e, a few hundred �
cm.

(ii) Spin flip correction to weak localisation

In the structural disorder problem the quantum corrections to the conductivity become im-
portant with growing �, and show up via the WL effect. This effect is already beyond stan-
dard transport theory. In this regime, with �=W � 1, the effect of magnetic scattering, even
with with J 0=W� 1 is non trivial. Spin flip scattering of the electrons [22, 23], by the random
magnetic moments serves to suppress the localising effect of structural disorder, Fig.15.(a) and
Fig.16.(a), as we discuss below.

Just as inelastic scattering leads to decoherence, and a suppression of quantum interfer-

ence, spin flip scattering of the electrons, arising from processes of the form (S

xi

+ iS

yi

)

y

i#



i"

etc, leads to spin decoherence and a corresponding cutoff to WL corrections. If the dephasing
time is �

s

, then the spin diffusion length is l
s

=

p

D�

s

, with the diffusion constant D / �

-2,
and �-1

s

/ J

02. The WL correction gets corrected [1] by Æ� / l-1
s

/ �jJj. If the WL correction
to the conductivity scales as � (k

F

l)

-1

� �

2, then the corresponding spin flip correction to
the resistivity should behave as Æ� � -�

5

jJ

0

j.
Fig.16.(a) shows �(J 0; �) in the moderate J 0 region, with � increasing beyond the Born

scattering regime. At weak disorder the resistivity has the expected form �(�; J

0

) / a

1

�

2

+

b

1

J

02, while at larger disorder we expect the � dependence to be stronger, and simultaneously
a positive contribution to the conductivity Æ� / jJ

0

j to show up. The coefficient of the J 02 term
could also be renormalised at large �. Taking these possibilities into account we fit the low J

0

resistivity to the form: �(�; J 0)j
J

0

!0

� �

1

(�)+b

1

J

02

+

1

(�)jJ

0

j+f(�)J

02, where the coefficients
would depend on electron density. �

1

(�) tracks the localising effect of structural disorder,


1

(�) measures the ‘antilocalising’ effect of spin flip scattering, and d
1

= b

1

+ f(�) monitors
the renormalised ‘Born scattering’ from spins.
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� in the intermediate J 0 regime, while panel (b) shows a ‘global’ view, with a logarithmic J 0

scale. Panel () shows how the ‘d.c conductivity’ is obtained by extrapolation, illustrating
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For n = 0:5, the resistivity from structural disorder, �
1

(�) � a

1

�

2

+ a

2

�

4

+ a

3

�

6, as we
fit in Fig.16.(b), with a

1

= 0:408, a
2

= 3 � 10

-4, and a
3

= 4 � 10

-5. The coefficient of the
‘anti-localisation’ term, Fig.16.(c) is 

1

(�) � 

0

�

�, with 
0

= -3:4 � 10

-4, and � � 5. The
(renormalised) coefficient of the J 02 term, d

1

= b

1

+ f(�), has the form indicated in Fig.16.(d).
While Fig.16.(b) highlights the rapid growth in resistivity due to structural disorder, Fig.16.(c)
indicates how this growth is cutoff via the spin flip scattering effected by J 0. This affects the
metal-insulator phase boundary as we discuss next.

(iii) Spin dephasing driven IMT

There is no perturbative scheme as the disorder increases beyond the weak localisation regime.
The SCT provides a guide and of course there is extensive numerical work on the Anderson
transition. Unfortunately, the SCT has no equivalent that includes magnetic scattering as
well (although there were early attempts in two dimension [37]), and we do not know of
even numerical work probing the MIT including magnetic scattering.

As � drives the system towards localisation, the effect of weak J 0 is dramatic. The small
increase in conductivity, correcting the weak localisation contribution, now develops into a
full fledged anti-localisation effect, enlarging the domain of the metallic phase, see phase
diagrams in Fig.14, and pushing up the critical disorder needed for localisation. The critical
disorder now depends on J 0 and increases from � � 16:5, at J 0 = 0, to � � 27 at J 0 � 8,
before dropping to � � 12 for J 0 ! 1 (see Fig.14.(c)). The optical conductivity data, Fig.18
illustrates how the low frequency conductivity increases as J 0 grows from 0:2 to 2:0, at � = 16,
and drastically reduces again for J 0 = 20. There is an insulator-metal-insulator transition with
increasing J 0 for 26 > � > 16:5.

While the IMT driven by ‘small J 0’ may be motivated as the ‘extrapolation’ of the antilo-
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(�), with a polynomial
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1
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calising effect of spin flip scattering, new physical effects emerge rapidly as J 0 is increased,
staying in the large � regime. The reducing resistivity, Fig.15. and Fig.16.(a), exhibits a min-
ima, and then rises again with increasing J 0. Such behaviour can be viewed as an extension of
the J 02 term seen at weak disorder, but it is probably more fruitful to approach the problem
from the strong coupling, double-exchange, end.

(iv) Double exchange with disorder

This regime corresponds to J 0=W ! 1, in the presence of arbitrary structural disorder, i.e,
the right edge of Fig.15.(b). The form of the resistivity �(J 0) arising from ‘magnetic disorder’
at large J 0 is very different from what one observes in �(�) at large �. This is because J 0

contributes to both ‘band splitting’ and effective disorder, and the effective disorder saturates
as J 0=W!1 with J 0 controlling only the band splitting.

The standard transformation to spinless fermions leads to the hopping disordered model
with t

ij

dependent on nearest neighbour spin orientation:

H =

X

ij

t

ij
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+
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�
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with the hopping amplitude specified earlier. As before we have split t
ij

into the ‘mean
hopping’, t

0

= hjt

ij

ji, and the fluctuation Æt.
The localisation properties of this model have been studied by Li et al. [24], although

they did not calculate the resistivity. The ‘hopping disorder’ by itself localises less than 0:5%
of the states in the band, and, as we observe, the resistivity at band center remains finite,
� 0:2�

Mott

. On adding structural disorder the mobility edge moves inward, with localisation



2.5 Combined structural and magnetic disorder 31

0 0.04 0.08 0.12

1/J’

0

0.02

0.04

σ

: ∆=02
: ∆=04
: ∆=06
: ∆=08

0 4 8 12

∆

0

0.02

0.04

f
1

100

200

300

400

ρ
inf

(a)

(b)

(c)

Figure 2.17: Resistivity at large J 0: (a) Fit to �(J 0; �) of the form �(1; �)+f

1

=J

0. (b) Resistivity
in the double exchange limit �(1; �) = 1=�(1; �). () The coefficient f

1

.

of the full band occuring at �=t � 11:5. The critical disorder, visible approximately at large J 0

in Fig.14.(c), can be motivated by the band narrowing in t
0

compared to t. In the fully spin
disordered phase t

0

=t � 2=3, and a crude scaling of�


(J

0

= 0) would suggest,�


(1)=�



(0) �

2=3, so that the double exchange model in the paramagnetic phase would localise at � � 11.
The small deviation from this value arises from the presence of Æt

ij

and the Berry phase
involved in it. Apart from the mobility edge calculation [24] we do not know of any exact
results on transport in the strongly disordered double exchange model.

The growth in resistivity with �, remaining at large J 0, is visible in the right edge of
Fig.17.(b). Within our calculation the MIT at large J 0 occurs slightly above � = 12.

(v) Strong disorder and intermediate coupling

This is the most complicated regime in the problem and also the most relevant for real disor-
dered magnetic systems. The regime corresponds to �=W � 1 and J 0=W � 1, and, as obvious
from Fig.15, �=�

Mott

> 1. This is a nominally ‘metallic’ but diffusive, highly resistive regime.
There are no analytical tools for directly estimating transport properties in this regime, but
much of the physics can be motivated by an expansion about the double exchange limit.

When J 0 is finite, both the electron spin states, polarised parallel and anti-parallel to the
core spin, need to be retained. In terms of these states the Hamiltonian assumes the form:

H =

X

ij

t

��

ij



y

i�



j�

+
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i

�

i

n

i

-
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i�

)

At large J 0 the chemical potential will be in the lower band, if we want n < 1. We can split

the t��
ij

, as we did for the single band model, into mean amplitudes and fluctuations. The
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major source of disorder is still �
i

, with additional contribution from the Æt��
ij

. The orbital
mixing effect of ‘off diagonal’ couplings, either in terms of mean amplitude or fluctuations,
is regulated by the large energy denominator J 0. Although the ‘reference’ problem, J 0 ! 1,
is not analytically tractable in the presence of structural disorder, we expect orbital mixing
to generate corrections to conductivity � O(1=J

0

). Fig.17.(a) fits the data, for � upto 8 and J 0

down to 6, to the form �(J

0

; �) j

J

0

!1

� �(1; �)+d

1

=J

0. Fig.17.(b) show �(1; �) = 1=�(1; �)

and Fig.17.(c) is the coefficient f
1

.
Fig.19 puts together the weak coupling and strong coupling fits to �(J 0; �), for � < 8,

comparing with the full numerical data. The quality of the fit indicates that the dominant
transport regimes in this problem can be classified as we had suggested earlier and some of
the physics can be motivated by extending concepts that are already available in the transport
literature. The regions of MIT cannot be described by these expansions and should probably
be accessed via a complementary scaling approach.

2.6 Concluding remarks

In this chapter we have presented exact results on electron transport in the background of
arbitrary structural and spin disorder and provided a framework within which the data can
be analysed. We have identified and explored the distinct transport regimes that arise in the
case of pure magnetic scattering, as well as the combined effect of structural and magnetic
disorder, In contrast to the effect of only structural disorder (where the resistivity ‘escalates’
with increasing disorder) or only magnetic scattering (where it ‘saturates’ with increasing
disorder) their combined action can lead to non monotonic dependence. The method devel-
oped in this chapter can be directly taken over in calculating the resistivity in the presence of
annealed disorder, and is extensively used in the succeeding chapters.
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Chapter 3

Effective Spin Hamiltonian for
Double Exchange Models

Chapter Summary: We propose a scheme for constructing classical spin Hamiltonians from
Hunds coupled spin-fermion models in the limit J

H

=t ! 1. The strong coupling between
fermions and the core spins requires self-consistent calculation of the effective ‘exchange’
in the model, either in the presence of inhomogeneities or with increasing temperature. In
this chapter we discuss results mainly on homogeneous phases, with self consistently renor-
malised couplings, and compare our results with exact simulation of the double exchange
model. We can access system sizes much beyond the reach of ‘exact’ simulations, and study
transport and optical properties of the model without artificial broadening. The generalisa-
tion to handle quenched disorder or competing interactions is made in subsequent chapters.
Some of the results in this chapter appear in our preprint cond-mat 0305345.

3.1 Introduction

The double exchange (DE) model was introduced by Zener [1] in 1951 to motivate ferromag-
netism in the perovskite manganites. In contrast to ‘Heisenberg like’ coupling between lo-
calised spins, the effective interaction in ‘double exchange’ arises from optimisation of carrier
kinetic energy in the spin background. The intimate correlation between spin configuration
and electron motion had, till recently, restricted the study of the DE model to mostly quali-
tative analysis or mean field theory. The original proposal of Zener was followed up [2] by
Anderson and Hasegawa, who clarified the physics of the coupled spin-fermion system in a
two site model, and de Gennes [3] who presented a thermodynamic calculation and a phase
diagram (incorporating antiferromagnetic superexchange). He produced the first estimate of
transition temperature (T



) in the model. The thermodynamic transition within double ex-
change was also studied [4] by Kubo and Ohata. This short list essentially exhausts activity
on the double exchange problem prior to the ‘manganite renaissance’.

The discovery of colossal magnetoresistance (CMR) and a variety of magnetic phases
in the manganites [5] led to renewed interest in the DE model. In addition, the availabil-
ity of powerful analytical and numerical tools, e.g , dynamical mean field theory (DMFT)
and Monte Carlo methods provided impetus for studying the DE model in detail. In real
systems the double exchange interaction is supplemented by [6] antiferromagnetic (AF) su-
perexchange, electron-phonon interactions, and disorder, and some of these models have
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been studied within various approximations. In this chapter our detailed results are on the
clean DE model, and we only briefly discuss the effect of disorder and competing magnetic
interactions. These effects are discussed in detail in later chapters.

Let us define the Hamiltonian, and the parameters relevant in our problem.

H = H

el

+H

AF

H

el

=

X

hiji;�

t

ij



y

i�
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+

X

i
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i
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i
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i
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H
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= J
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hiji

S
i
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(3.1)

The t
ij

= -t are nearest neighbour hopping, on a square or cubic lattice as relevant.
The on site potential is uniformly distributed between ��=2 and J

S

is an antiferromagnetic
superexchange between the core spins. J

H

is the ‘Hunds’ coupling, and we will work in the
limit J

H

=t ! 1. The parameters in the problem are �=t, J
S

=t, and the carrier density n
(or chemical potential �). We assume a classical core spin, setting jS

i

j = 1, and absorb the
magnitude of the spin in J

S

. All our energy scales, frequency (!) and temperature (T), etc,
will be measured in units of t.

For J
H

=t!1 the fermion spin at a site is constrained to be parallel to the core spin, gain-
ing energy -J

H

=2, while the ‘antiparallel’ orientation is pushed to +J

H

=2. Since the hopping
term t

ij

itself is spin conserving, the motion of the low energy, locally parallel spin, fermions
is now controlled by nearest neighbour spin orientation. The strong magnetic coupling (J

H

)

generates an effective single band ‘spinless fermion’ problem [7], with core spin orientation
dependent hopping amplitudes. We will discuss the hopping term further on, for the mo-
ment let us denote the renormalised (spin orientation dependent) hopping amplitude as t̃,
indicative of double-exchange physics.

The t̃- �- J

S

problem has a variety of ground states.

� In the absence of J
S

, both the ‘clean’ and the disordered DE model has a ferromagnetic
ground state, at all electron density, with T



reducing with increase in �.

� The non disordered problem, with J
S

, leads to a variety of phases [8, 9] competing with
ferromagnetism. These are ferromagnetic and A, C, G type AF phases, etc. There could
also be more exotic ‘flux’, ‘skyrmion’ or ‘island’ phases in some parts of parameter
space. The boundaries between these phases are often first order so there are regimes
of macroscopic phase coexistence. The specific set of possible AF phases depends on J

S

.

� Weak disorder in the t- J
S

problem [10, 11] converts the regions of macroscopic phase
separation into mesoscopic phase coexistence of FM and AF clusters.

� For some density and �- J

S

combination, the ground state is a spin glass.

Although the phases above can be motivated easily, the electrical character of the ground
state, or the temperature dependence of magnetic and transport properties, or the response
to an applied magnetic field, are still not well understood. A comprehensive understanding
of these effects within the relatively simple model in Eqn.1 would be the first step in ap-
proaching the even richer variety of phases in the manganites, where the lattice degrees of
freedom are also active. This calls for a new technique, handling spatial and thermal fluc-
tuations, the formation of clusters, and the effect of electron localisation. We propose and
extensively benchmark such a real space technique in this chapter. To appreciate the need for
a new method let us quickly review the current approaches to the Hamiltonian above.
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3.1.1 Theoretical approaches

The approaches can be broadly classified into three categories. These are: (i) Exact variational
calculations [12] at T = 0, and generalisation [13, 14, 15] to T 6= 0 via approximate mean
field techniques. Let us call these methods variational mean field (VMF), for convenience.
(ii) Dynamical mean field theory (DMFT) based calculations [16, 17] which map on the lattice
model to an effective single site problem in a temporally fluctuating medium. Apart from
a formal limit d ! 1, where d is the number of spatial dimensions, there are no further
approximations in the theory. (iii) Real space, finite size, Monte Carlo (MC) simulations
[18, 19, 20, 21, 22] of the coupled ‘spin-fermion’ problem, treating the core spin as classical.

We can set a few indicators in terms of which the strength and weakness of various ap-
proximations can be judged. These are, tentatively:

1. The ability to access ground state properties.

2. Ability to handle fluctuations. and accuracy of T


estimate.

3. The ability to access response functions: e.g, transport and optical properties.

4. Treatment of disorder effects: Anderson localisation and cluster coexistence.

5. Ability to handle Hubbard interactions, and quantum effects in spins and phonons.

6. Computational cost and severity of finite size effects.

Variational calculations

The variational calculations attempt a minimisation of the energy of the (clean) system, at
T = 0, with respect to a variety of ordered spin configurations. The optimal configuration
fS
i

g

min

for specified J
S

, �, etc, is accepted as the magnetic ground state. The energy calcu-
lations are relatively straightforward, since the electron motion is in a periodic background.
The method has been used to map out the ground state phase diagram of DE model with
AF superexchange in two and three dimension [8, 9]. The approach, however, can only be
approximately implemented at finite temperature [13, 14, 15]. One has to calculate a spin
distribution instead of just targeting the ground state, and estimating the energy of an elec-
tron system in a spin disordered background is non trivial. Due to the mean field character
of VMF, fluctuation effects are lost and transition temperatures are somewhat overestimated.
The method is focused on thermodynamic properties so there is no discussion of transport,
etc, within this scheme (with one exception [13]). Disorder effects have been included, ap-
proximately [13], in some of these calculations. Variational methods can provide indication of
phase coexistence [8, 9] at T = 0, or, approximately, at finite temperature [14, 15], but cluster
coexistence in a disordered system is beyond its reach. The method has not been generalised
to include quantum many body effects. Finite size effects in this approach are small and the
method is relatively easy to implement.

Dynamical mean field theory

The single site nature of the DMFT approximation becomes exact in the limit of ‘high dimen-
sions’. DMFT can access both ground state and finite temperature properties, but the effective
single site approximation cannot capture spatial fluctuations, or a non trivial paramagnetic
phase. The ‘mean field’ character leads to an overestimate of T



, and also the inability to dif-
ferentiate between two and three dimensional systems. Being a Greens function based theory
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DMFT can readily access response functions. However, effects like Anderson localisation or
cluster coexistence, which require spatial information, cannot be accessed. The method can
handle many body, Hubbard like, interactions and quantum dynamics in all the variables
involved, although such calculations are quite difficult. DMFT is defined directly in the ther-
modynamic limit, so there are no finite size effects. The calculations are relatively easy, when
quantum many body effects are not involved, and have been a major tool in exploring phe-
nomena in the manganites.

The limitations of DMFT become apparent as we consider the more complicated phases
that can arise in our model. For instance in the strong disorder problem, when there is a
possibility of electron localisation, the DMFT approach cannot access the insulating phase.
Neither can it access the spatially inhomogeneous nature of freezing, and the persistence of
strong spin correlations above the bulk T



. Similarly, in the problem of competing double
exchange and superexchange, in the presence of weak disorder, the system breaks up into
interspersed ‘ferro-metallic’ and ‘AF-insulating’ regions. A complicated variant of this coex-
istence effect has been extensively studied in manganite experiments [23]. The ‘single site’
nature of DMFT cannot access cluster coexistence, except possibly in an averaged sense. The
transport and metal-insulator transitions that can occur in this situation also remain inacces-
sible. So, there are important qualitative effects beyond the reach of DMFT, in systems where
spatial inhomogeneity is important.

Monte Carlo

The finite size real space approach uses the Metropolis algorithm to generate equilibrium
configurations of the spins at a given temperature. Monte Carlo calculations on classical
systems with short range interactions involve a cost O(zN) for a system update, with z being
the coordination number on the lattice and N the system size. In the spin-fermion problem,
however, the ‘cost’ of a spin update at a site has to be computed from the fermion free energy.
If one uses direct diagonalisation of the Hamiltonian to accomplish this, the cost per site is
O(N

3

), the cost for a ‘system update’ is a prohibitive N4. All this is after ignoring quantum
many body effects. Current MC approaches have not been generalised to handle Hubbard
like interactions.

Despite the severe computational cost, this method, which we will call ED+MC (exact di-
agonalisation based MC), has been successfully used to clarify several aspects of manganite
physics, and DE models in general. System sizes accessible are � 100 at most (recent algo-
rithms [21] have enhanced this somewhat), with 50-60 being more typical. This method can
provide an outline of the finite temperature magnetic phase diagram, reveal major spectral
features, and even yield the basic signatures of cluster coexistence. However, as is obvious
from the accessible N, the finite size gaps are much too large for any reasonable estimate of
d.c transport properties, and the small linear dimension available, in two or three spatial di-
mension, allows only a preliminary glimpse of coexistence physics. The size limitation apart,
the method is exact and comprehensive, with none of the problems of standard quantum
Monte Carlo (QMC). An extension of this approach to larger system sizes would allow ex-
ploration of several unresolved issues in manganite physics. Apart from the ED based MC,
‘hybrid MC’ results have been reported [9, 22] for the various phases of double exchange
competing with superexchange antiferromagnetism. No transport results, however, have yet
been presented within this framework.

Our method, described in the next section, is developed in this spirit. It is a real space
Monte Carlo approach with the key advantage that it avoids the iterative N3 diagonalisation
step. We extract an effective Hamiltonian for the core spins from the coupled spin-fermion
problem, through a self-consistent scheme. We can work at arbitary temperature, handle
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strong disorder, and have better control on ‘cluster physics’ and transport properties due to
our significantly larger system size,N � 10

3.
In the next section we describe our approximation and its computational implementation

in detail. Following that we describe our results on the ‘clean’ DE model in two and three
dimension. We will discuss results on thermodynamics, spectral features, resistivity and
optical conductivity, in most of these cases, and compare with exact simulation results. We
will also highlight systematically the size effects in transport and optical properties.

3.2 Method

3.2.1 The J

H

=t!1 limit

We have already written down our basic Hamiltonian in Eqn.1. The transformation and
projection described in the next couple of paragraphs is well known, but we repeat them
here for completeness.

Since we work at large J
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=t it is useful to ‘diagonalise’ the J
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arises from the product of the two transformations at site i and site j, and we will de-
scribe its specific form later. Since the canonical transformation is local, the density operator
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At finite J

H

=t this is just a transformation from the ‘lab frame’ to a local axis and the ‘up’
and ‘down’ spin fermions get mapped to (l; u), but we still have to solve a mixed ‘two orbital

problem’. However, if J
H

=t!1 then all the ‘anti-parallel’ y

iu

j0i states get projected out and

we can work solely in the subspace of states created by y
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. In this space, the Hamiltonian
assumes a simpler form:
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where we have dropped the superfluous ll label in g
ij

, and absorbed -J

H

=2 in the chemical
potential. The hopping amplitude g
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= f

ij
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ij between locally aligned states, can be writ-
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). It is easily checked that the ‘magnitude’ of the overlap, f
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)=2, while the phase is specified by tan�
ij

= Im(g
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)=Re(g
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).
This problem can be viewed as a quadratic ‘spinless fermion’ problem with core spin

dependent hopping amplitudes. The fermions move in the background of quenched disor-
der �

i

and ‘annealed disorder’ in the fS
i

g, where the second brackets indicate the full spin
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configuration. To exploit the nominally ‘non interacting’ structure of the fermion part we
need to know the relevant spin configurations, fS

i

g, or, more generally, the distribution PfS
i

g,
controlling the probability of occurence of a spin configuration.

3.2.2 Effective Hamiltonian for spins

The partition function of the system is Z =

R

DS
i

Tre

-�H. To extract PfS
i

g note that for a
system with only spin degrees of freedom, Z will have the form

R

DS
i

e

-�HfSg. Comparing
this with the partition function of the spin-fermion problem we can use
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The trace is over the fermion degrees of freedom. In our case
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(3.4)

The principal difficulty in a simulation, and quite generally in spin-fermion problems, is
in evaluating the first term on the r.h.s above for an arbitrary spin configuration. This is the
origin of the N3 factor in the exact MC. Our key proposal, whose analytic and numerical
justification we provide later, is
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where D
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is an effective ‘exchange constant’ to be determined as follows. Define the oper-
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any specified spin configuration ff;�g we can calculate the correlation function D
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is the electronic partition function in the specified background.
The exchange that finally enters H
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is the average of D
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ff;�g over the assumed equilib-
rium distribution, i.e: D
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DfD�Pff;�gD
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ff;�g where we denote a spin configuration
interchangeably by ff;�g or fSg. Qualitatively, the ‘effective exchange’ is determined as the
thermal average of a fermion correlator over the assumed equilibrium distribution. Let us
bring together the equations for ready reference.
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The ED+MC approach ‘solves’ for physical properties by using the first four equations
above: equilibriating the spin system by using H

eff

, which itself involves a solution of the
Schrodinger equation for the electrons.

Our method approximates the ‘exact’H
eff

by the form specified in the fifth equation, and
computes an exchange rather than equilibrium configurations themselves, by fermion diago-
nalisation. The sixth and seventh equation indicate how the ‘loop’ is closed.We will refer to
this method as Self Consistent Renormalisation (SCR) or H

eff

scheme, throuout this thesis.
This nonlinear integral equation for theD

ij

is solved to construct the ‘classical spin model’
for a set of electronic parameters, disorder realisation, and temperature. Although the as-
sumption about H

eff

seems ‘obvious’, and in fact something similar, but simpler, had been
explored early on by Kubo and Ohata [4], and recently by Calderon and Brey [19], the power
of the method becomes apparent in disordered systems or in the presence of competing in-
teractions. In these cases the solutions D

ij

can be spatially strongly inhomogeneous, and
dramatically temperature dependent. The properties of such systems are far from obvious.

The equilibrium thermal average of any fermion operator, or correlation function, ^

O, can
now be computed using the self-consistent distribution as:

hh

^

Oii =

Z

DfSgPfSgO(S) (3.7)

The average O(S) is computed on a spin configuration fS
i

g, with the configurations them-
selves picked according to the effective Boltzmann weight / e-�Heff .

We have not written the equation for �. Since we would typically want to work at fixed
density rather than fixed chemical potential, we employ the procedure above to calculate n
and iterate � till the ‘target’ density is obtained. In actual implementation, discussed later, the
� ‘loop’ and theD

ij

‘loop’ run simultaneously. We next discuss the analytic underpinning of
our method before moving to numerical results.

3.2.3 Analytic limits

The central problem in DE models is construction of an energy functional for arbitrary spin
configurations ff;�g. This information is contained in the fermion free energy, -TlogTre-�Hel

as we have seen. We study two limits below, where the leading effects are well captured by
our effective Hamiltonian.

Low temperature

If we ignore disorder and AF coupling, for simplicity, and if the free energy of the fermions
can be approximated by the internal energy, then D

ij

ff;�g contains the necessary informa-
tion about the energy of any spin configuration: Eff;�g � H

eff

ff;�g =

P

ij

D

ij

ff;�gf

ij

. The
configuration dependent correlation function, however, is hard to calculate, since it requires a
solution of the Schrodinger equation for each spin configuration.

At low temperature, as the spins gradually randomise, the system explores configura-
tions ff;�g near the ground state in the free energy landscape. The relevant D

ij

ff;�g �
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D
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ff;�g, where D0 is the ‘exchange’ computed on the ground state, and ÆD is the

variation. At low T, such that the relevant ÆD � D

0, we can neglect the variation, ÆD, be-
tween configurations, and the ‘effective Hamiltonian’ assumes the form:
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As we will see in the simulations this approximation is remarkably good in the simple DE
model almost upto T



=2. At higher T the ‘renormalisation’ of D becomes important.

High temperature

For T


=T� 1, cumulant expansion yields an asymptotically exact effective Hamiltonian:
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This apparently has a structure different from that of our H
eff

, and additionally an ‘effective
coupling’ falling off as 1=T. In fact our coupling D has the same form, as can be checked by
evaluating hh^�

ij

ii in a high temperature expansion. This quantity also depends on n(1 - n),
to allow hopping, and falls off as 1=T since it is non local. The self-consistent calculation of the
effective exchange, now based on the high temperature phase rather than the ground state,
ensures that the leading contribution to the energy is well captured. The physical conse-
quence of the 1=T effective exchange is that the susceptibility of the DE model does not have
the Curie-Weiss form that one expects for Heisenberg like models [24].

The next order in series expansion will generate terms of the form:
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summed over the minimal plaquette. Higher powers in �t involve longer range excursion of
the fermions, but the limited data available from exact simulations suggests that the critical
properties of double exchange are similar to that of short range spin models.

Although the procedure above can be extended to extract an ‘exact’ effective Hamiltonian
to high order in �t, we know of no such attempt. The only series expansion results available
are on the S = 1=2 model, directly calculating thermodynamic properties [25].

3.2.4 Monte Carlo implementation

Since the ground state of the system is often not known it is usual to start from high temper-
ature and follow the sequence below in generating the effective Hamiltonian and studying
equilibrium properties.

(i) We start at high temperature, T � T



, assuming some Dn

ij

(T), where n is the itera-
tion index. and ‘equilibriate’ the system with this assumed effective Hamiltonian (not yet

self-consistent), (ii) We compute the average hhei�ij



y

i



j

+ h:ii over these (pseudo) equi-
librium configurations. This generatesDn+1

ij

(T). (iii) Compare the generated exchange with
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the assumed exchange at each bond. Accept if within tolerance. If converged, then D
ij

rep-
resents the correct ‘exchange’ at that temperature. Else, replace Dn

ij

by Dn+1

ij

. (iv) At each
temperature and iteration, adjust � as necessary to keep n constant.

At convergence fermion properties can be calculated and averaged over equilibrium MC
configurations of the spin model. For a disordered system (� 6= 0), the thermal cycle above
has to be repeated for each realisation of disorder. In the clean problem, translation invariance
forces the exchange to be uniform at all bonds, while � 6= 0 generates a bond disordered spin
model.

The computational effort needed in the ED+MC approach is / N
MC

�N

4, at each tem-
perature, where N

MC

is the number of MC sweeps (10

3

- 10

4

), andN the size of the system
(actually the Hilbert space dimension). As we have mentioned before, current resources al-
low N

max

� 100. Within our H
eff

scheme the MC configurations are generated using a short
range spin model, with cost O(N). The actual cost is in determining the exchange: this is
/ N

iter

� N

av

� N

3, where N
iter

is the number of iterations needed to get a converged
solution, with � 10% accuracy per bond, and N

av

is the averaging needed per iteration for
generating a reasonable ‘equilibrium average’. TypicallyN

iter

� 4 andN
av

� 50.
We can roughly compare the computational cost of ED+MC with the H

eff

scheme. For
ED+MC, the time required is, �

N

� N

MC

�N

4 at a given temperature. For the H
eff

scheme,
�

N

� N

iter

�N

av

�N

3. Putting in the numbers, if resources allow N � 100 for the ED+MC
approach, the same resource will allowN � 1000within theH

eff

scheme. In terms of compu-
tation time,H

eff

is no more expensive than standard ‘disorder average’ in electronic systems.

3.2.5 Physical properties at equilibrium

The major physical properties we compute at equilibrium are optical conductivity and d.c
resistivity, the density of states (DOS), and the magnetic structure factor.

(i) We have already discussed our transport calculation method in the previous chapter.
This technique is used for accessing �

d

and �(!). (ii) Each equilibrium magnetic configura-
tion leads to a ‘DOS’ of the form

P
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), where �
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are the single particle eigenvalues
in that background. The thermally averaged DOS that we show involves a Lorentzian broad-
ening of each Æ function, as indicated below.
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The sum runs over the eigenvalues obtained in any spin configuration, and summed over
equilibrium configurations. We use � � 0:1 in our results, although much smaller � would
still give a smooth spectra at high T. (iii) The magnetic structure factor is calculated as
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3.3 Results

In this section we provide a comprehensive comparison of results based on the ‘exact’ scheme
(ED+MC) and our effective Hamiltonian approach, for the ‘clean’ DE model in two and three
dimension, and extend the study to large sizes using the H

eff

scheme. The system is trans-
lation invariant, there are no competing interactions, and the low temperature phase is a
ferromagnet.
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3.3.1 Magnetism and thermodynamics

We begin with a comparison of the magnetisation, m(T), obtained via the exact and approxi-
mate schemes on 8� 8 lattices in 2d, and 43 systems in 3d, with periodic boundary condition
(PBC) in both directions. Fig.1 compares the m(T) obtained via the two schemes at three
electron densities.

Note at the outset that both the DE model and our H
eff

are O(3) symmetric and are not
expected to have long range order at finite T in 2d (in an infinite system). However, as has
been demonstrated in the case of the two dimensional classical Heisenberg model [26], O(3)

models have exponentially large correlation length at low temperature in 2d. For a nearest
neighbour classical Heisenberg model with jS

i

j = 1, and exchange J, the low T correlation
length �(T) � 0:02e

2�J=T . So, for T � J even large finite lattices would look ‘fully polarised’
and one would need to access exponentially large sizes to see the destruction of long range or-
der. This allows us to define a (weakly size dependent) ‘characteristic temperature’T

h

(n) for
the DE model which marks the crossover from paramagnetic to a nominally ‘ordered’ phase.
The true ordering temperature of strongly anisotropic DE systems, e.g, the layered mangan-
ites, which the planar model mimics, would be determined by the interplane coupling, but
the in plane transport would be dictated mainly by the 2d fluctuations as encountered here.

The difference between the two schemes, Fig.1.(a) is most prominent at the highest den-
sity, n = 0:41, where the T

h

inferred from these small size calculations differ by 15% - 20%.
At lower density the difference is still visible but much smaller. We have indicated the T

h

scales inferred from the two schemes in the inset in Fig.1.(a) The difference between the two
schemes is usually largest in clean high density systems, as we will see also in the three
dimensional case. However, over the entire density range, the maximum deviation is � 20%.

Notice that at all n, the low temperature m(T) obtained via H
eff

corresponds almost ex-
actly with results based on ED+MC. This works upto � T

h

=2. The high temperature result
within the two schemes is also in close correpondence but that is better illustrated in the
thermodynamic data, Fig.2, which we will discuss in the 3d context.

Fig.1.(b) shows the results on magnetisation in the three dimensional problem at three
densities, comparing results based on ED+MC andH

eff

. As in two dimension the difference
in the estimated T



is greatest near the band center, being � 15% - 20%, the correspondence
improving as we move to n . 0:2. As before, the exact and approximatem(T) match at low
T for all densities.

Fig.2(a) which shows the thermodynamic indicators in the 3d case reveals thatD
ij

itself is
virtually indistinguishable in the two schemes. The correlationD

ij

= hh

^

�

ij

ii can be evaluated
as an equilibrium average in an exact simulation also, although there it does not feed back
into the calculation. The match between the D’s computed in two different schemes, and
across the density range, suggests that the difference in m(T) seen near half-filling is not
due to different numerical values of D, but the assumed form of H

eff

. We either need a
more sophisticated definition of the finite temperatureD, or a different form of H

eff

to bring
the high density results of H

eff

in closer correspondence with ED+MC. Notice that the D’s
are only weakly temperature dependent and the m(T) at low temperature could have been
obtained by setting D(T) = D(0). In fact over the temperature range 0 - T



the qualitative
physics can be accessed without the thermal ‘renormalisation’ of the exchange. However,
for T � T



the renormalisation is important, as suggested earlier by the high temperature
expansion.

The results on all thermodynamic indicators, D(T), E(T), �(T) and E
b

(T), Fig.2, show
the close correspondence between results of the exact and approximate scheme. The D’s are
almost temperature independent in the range 0 - T



and hardly distinguishable between
ED+MC and H

eff

, suggesting that effects beyond our effective Hamiltonian -D

P

f

ij

is
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Figure 3.1: Magnetism in the 2 and 3 dimensions, open symbols are for ED+MC, the dotted
lines indicate the SCR results.
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Figure 3.2: Comparing thermodynamic indicators between ED-MC and the H
eff

scheme in
3d: (a) effective exchange, (b) internal energy, () chemical potential and (d) band edge.
Displayed value is actual value + shift. System size 4� 6� 4. Open symbols: ED-MC, dotted
lines: SCR.
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needed to accurately describe the magnetic transition at the band center.
We extend the H

eff

scheme to large system size, and study the magnetism in 322 and
10

3 lattices. Fig.3 shows the results on m(T), and the inset shows the T


inferred from these
simulations. The maximum T



, occuring at band center is � 0:2 which, with t � (100 -

150)meV, will be in the range 200- 300K. These numbers are typical of high electron density
Hunds coupled systems, and are in the right ballpark when compared to the manganites.

Fig.4 shows the thermodynamic indicators computed within the H
eff

scheme on 103 in
3d. The strong T dependence in � and E

b

, seen also at small sizes, arise from the ‘band nar-
rowing’ effect of spin disorder which reduces the mean hopping amplitude with increasing
temperature.

3.3.2 Density of states

Fig.5 shows the density of states (DOS) computed at n = 0:3, four temperatures, and for a
small, 43, and a large, 103, system. The mean level spacing at high temperature (where the
spins are completely disordered) is � 12=L

3 which is � 0:01 at L = 10 and � 0:18 at L = 4.
For T! 0, the polarised ferromagnetic state leads to large degeneracy and the level spacings
could be more than 10 times larger than the high temperature value. We have broadened all
Æ functions by � = 0:1, so that the high temperature L = 4 spectra looks reasonable. With this
broadening the L = 10 data looks reasonable even below T



.
This comparison highlights the unreliability of small size data in inferring spectral fea-

tures over most of the interesting temperature range. Small sizes can often provide reason-
able results on energetics, but on spectral features and, more importantly, on low frequency
transport, they are completely unreliable.

3.3.3 Optical properties

Fig.6 shows the optical conductivity, �(!) The optical conductivity is a vital probe of charge
dynamics in the system. Our data in the main panel, Fig.6, is for a 8� 8� 8 geometry. At the
lowest temperature there is an artificial ‘hump’ in �(!) which we think arises because the
polarised three dimensional system has large degeneracy, and finite size effects are stronger
than in two dimension. Nevertheless, there are some notable features in �(!), (i) the con-
ductivity is Drude like, (ii) there is rapid reduction in low frequency spectral weight with
increasing temperature, with some transfer to high frequency, (iii) the weight in �(!) is not
conserved with increasing temperature, the loss is related to the suppression of kinetic energy
with increasing spin disorder.

3.3.4 Resistivity

Finally, we look at the resistivity which, surprisingly, has seen little discussion. Fig.7 shows
the correlation between the ferromagnet to paramagnet transition and the rise in �(T). We
have normalised �(T) by the value at T = 0:4, the ‘absolute’ resistivity is shown in Fig.7.(c)-
(d). Unlike mean field treatments which treat the paramagnetic phase as completely ‘uncor-
related’ and would yield a ‘flat’ resistivity for T > T

h

, there is a significant increase in �(T)
with rising temperature in the ‘paramagnetic’ phase as the short range spin correlation is
gradually lost and the system heads towards the fully spin disordered phase. The general
rise in �(T) in the paramagnetic phase is not specific to two dimension, but surprisingly in
2d most of the rise seems to occur after the drop in m(T), rather than across T

h

as one sees
in three dimension. We will discuss the ‘critical behaviour’ of the resistivity and thermody-
namic response in two dimensional (layered) and three dimensional systems elsewhere.
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For a check on the reliability of the computed �(T) the inset in Fig.7.(a) shows the ‘resis-
tivity’ computed on L � L geometry for L = 8; 16; 24; 32 across the full temperature range.
The L = 8 result has the same problem that we discussed in the context of �(!), it essentially
behaves as an ‘insulator’ at low T due to the finite size gap. The L = 16 data has similar up-
turn, but at a lower temperature. The data at L = 24 (not shown) and L = 32 are stable down
to T � 0:02 and almost coincide, suggesting that except at very low temperature, results on
these sizes are representative of bulk transport.

The resistivity across the band is shown in Fig.7.(c)-(d). The three densities show simi-
lar overall temperature dependence, and the ‘high temperature’ values are around 10. Our
conductivity results are in units of (�e2)=h̄ in 2d.

The resistivity in the three dimensional case differs from two dimensional case in that the
major rise in �(T) occurs around T



in the 3d case, while it occurs beyond T
h

in the 2d case.
Fig.7.(b) shows m(T) correlated with the normalised �(T), and the rise is reminiscent of the
Fisher-Langer result [27] in weak coupling electron-spin systems.

The inset in Fig.7.(b) shows the stability of the transport result for L & 8, and the unrelia-
bility for L � 4. Fig.7.(c)-(d), shows the absolute resistivity for a few densities. The ‘high tem-
perature’ resistivity, at T � 3T



is approximately 15 - 25, in the density range shown, which
in real units would be � (1 - 2)m
cm, roughly the high T resistivity of La

1-x

Sr
x

MnO
3

for
x & 0:4.

The left panel of fig.8. shows the correlation between d�=dT and the specific heat. The
d�=dT seems to match C

v

very well for T > T



, which is consistent with the Fisher-Langer
result. The magnetoresistence is shown in the right panel of fig.8. for both 2d and 3d. The
response to the magnetic field is strongest in the vicinity of T



.
To conclude this section we have presented comprehensive data on magnetism, thermo-

dynamics, spectral features, transport, and optics in the DE model in two and three dimen-
sion retaining the correlated nature of spin fluctuations and implementing the Kubo formula.

3.4 Conclusion

In this chapter we have dicussed only the ferromagnetic phase of the DE model. In this case
the complicated consistency and thermal renormalisation involved in our scheme are not
crucial for a qualitative understanding. However, when we move to disordered systems, or
non ferromagnetic ground states, or the regime of multiphase coexistence, the full power of
a ‘bond disordered’ effective Hamiltonian, with non trivial spatial correlation between the
bonds, becomes apparent. For the ‘clean’ ferromagnetic case one may try to ‘improve’ the
self-consistency scheme to obtain better correspondence [19, 28] with ED+MC results. How-
ever, given the complexity of the current scheme, and the range of possibilities that it offers,
we think it is more important to exploit the present scheme to resolve the outstanding qual-
itative issues first. Finally, although the entire scheme is presently implemented numerically,
it would be useful to make analytic approximations within this framework to create greater
qualitative understanding.
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Chapter 4

Anderson-Mott Transition in
a-GdSi

Chapter Summary: A zero temperature Anderson-Mott transition driven by spin disorder
can be ‘tuned’ by an applied magnetic field to achieve colossal magnetoconductance. Usually
this is not possible since spin disorder by itself cannot localise a high density electron system.
However, the presence of strong structural disorder can realise this situation, self consistently
generating a disordered magnetic ground state. In this chapter we explore such a model,
constructed to understand amorphous GdSi, and highlight the emergence of a spin glass
phase, Anderson-Mott signatures in transport and tunneling spectra, and unusual magneto-
optical conductivity. We solve a disordered strong coupling fermion-spin-lattice problem,
essentially exactly on finite systems, and account for the qualitative features observed in
magnetism, transport, and the optical spectra in this system. Some of the results discussed
here have been published in Phys. Rev. Lett. 90, 237202 (2003).

4.1 Introduction

The role of disorder in electronic systems is an enduring theme in condensed matter physics
[1, 2, 3, 4]. Structural disorder leads to localisation of electronic states and, in a three dimen-
sional system, all electronic states would be localised [3] if the disorder, ‘�’ say, were greater
than a critical value (�



). For weaker disorder, � < �


, only states beyond an energy �


(�)

of the band center, i.e in the band tails, are localised. A system is metallic or insulating de-
pending on whether the Fermi level, �

F

, is above or below this ‘mobility edge’ �


. Variation
in electron density, and hence �

F

, can drive a system through the insulator-metal transition
(IMT). This is the basic scenario for the ‘Anderson transition’ in a non interacting electron
system [3, 4].

Doped semiconductors [5] have served as a laboratory for studying disorder effects since
they allow systematic control of the carrier density. The IMT has been studied in doped
crystalline systems, the most famous example being phosphorus doped silicon [6] (Si:P), and
less extensively in amorphous semiconductors [7]. In experimental systems, however, the
phenomena of localisation is complicated by electron-electron (EE) interaction effects which
become very pronounced close to the IMT [8]. In amorphous systems, for example, there
are clear signatures of interaction effects in the density of states and the conductivity close
to the IMT. The interplay of disorder and interaction effects near the IMT is not completely
understood [9, 10] and continues to be an area of active research.
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The introduction of magnetic moments in a ‘disordered’ system brings in new phenom-
ena. The effects are well understood in crystalline semiconductors [11, 12], where the dis-
order is weak and the relevant regime is of low carrier density. In these systems, electrons
are trapped in the potential fluctuations and polarise the magnetic moments in their neigh-
bourhood. This leads to a gain in exchange energy, and tends to enhance the localisation of
the carrier. The net localising effect in these systems, therefore, arises from a combination
of (i) on site disorder; a ‘single particle’ effect, and (ii) ‘bound state’ formation between the
electron and the magnetic moments; a ‘many body’ effect. The composite object, a (trapped)
electron and the polarised spins in its vicinity, is called a ‘spin polaron’. Since the IMT in these
systems occurs at a carrier density � 10

-5 (per unit cell), the picture of non overlapping, un-
correlated, spin polarons is adequate. The interesting difference between these systems and
their non magnetic counterparts lies in the response to a magnetic field. An applied field
globally aligns the magnetic moments, reduces the polaron binding energy, and tunes the
‘magnetic component’ of localisation. The change in activation energy (or mobility) of the
carriers can lead to enormous magnetoresistance [13, 14]. These systems have been known to
exhibit ‘colossal magnetoresistance’ (CMR) much before such effects were observed in the
manganites.

Recent experiments [15, 16, 17, 18, 19] on amorphous (a)-GdSi reveal that doping mag-
netic moments in an amorphous system combines the richness, and complication, of the tra-
ditional IMT in amorphous semiconductors [7] with the physics of ‘CMR’. In addition a dis-
ordered magnetic state, a spin glass, with rather unusual properties emerges at low temper-
ature. This combination of an IMT, in a high carrier density system, with CMR, and a spin
glass ground state is probably unique to GdSi. We will discuss these experiments in the next
section. The essential phenomena in these systems seems to be:

� Electron localisation due to strong disorder in the amorphous structure.

� Indirect exchange interaction between the doped moments, mediated by the electrons,
leading to a spin glass state.

� Feedback of the spin background on the electronic system, via ‘spin disorder’, tending
to enhance electron localisation.

� Control of the ‘spin disorder’ by a magnetic field, h, leading to large negative magne-
toresistance close to the critical density.

� Large transfer of spectral weight [19] from high to low frequency in the optical conduc-
tivity, is response to a magnetic field (in GdSi) or increase in temperature.

� In addition the following effects, characteristic of the interplay of disorder and EE inter-

actions near an IMT are also seen: (i) a correlation gap in the density of states, (ii)
p

T

dependence in the the low temperature conductivity, and, possibly, (iii) local moment
formation’ in the electron system.

Unlike the case of crystalline magnetic semiconductors, where the concept of isolated ‘bound
magnetic polarons’ [11, 12] seems to suffice, we do not have an understanding of a high den-
sity of electrons in the background of strong disorder, interacting with randomly located magnetic
moments and with each other. Scenarios in terms of a canonical “Anderson transition”, or iso-
lated polarons, or model spin glasses, do not suffice, and the interplay of these effects is what
we study in this chapter.
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Figure 4.1: Left panel: Temperature dependence of the conductivity for a-GdSi (samples
G1-G4) a-YSi (samples Y1-Y3) and a-TbSi. Composition is shown for each, uncertainty in
x is �0:01. Inset: log

10

� vs T-1=2. Right panel: � -vs- magnetic field for a-GdSi (G3) at
different temperatures (normalised to �(0), the zero field value at each temperature). Inset:
�(60 KOe)- �(0) normalised by �(0) � the magnetoresistance versus temperature for G1-G4.

4.2 Experiments on a-GdSi

Let us review the basic experiments in a-GdSi in some detail. The measurements have been
made [15, 16, 17, 18, 19] on a-GdSi and simultaneously on the non-magnetic analog a-YSi, to
clarify the role of magnetic moments on the IMT. The results are broadly on (i) the conduc-
tivity, �, and the magnetoresistance, (ii) spectral properties/density of states (DOS), probed
through tunneling, (iii) thermodynamic properties: specific heat, C

V

, and entropy, S, (iv)
magnetic properties: the linear response susceptibility �(T) and the magnetisation m(h; T),
and (v) the magneto-optical response.

4.2.1 Conductivity:

We begin with the conductivity, Fig.1 reproduced from [15].

� Both Y
x

Si
1-x

and Gd
x

Si
1-x

show an insulator-metal transition as the doping, x, is in-
creased across a critical value x



. The critical doping required (x



� 14%) is slightly
greater in GdSi compared to YSi.

� For both GdSi and YSi, in the doping range 0:17 > x > 0:11, the conductivity has
d�=dT > 0, i.e d�=dT < 0, at all T. This is true even of the systems which are ‘metallic’
at low temperature.

� For the metallic samples the low temperature conductivity can be fitted to �(T) �

�

0

+ �

1

p

T. �
0

and �
1

are constants and the
p

T term arises from Coulomb effects
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Figure 4.2: (a) - (d) Tunneling conductance dI=dV -vs- bias voltage V

bias

of four
GdSi/oxide/Pb tunnel junctions, at T = 100 mK for indicated magnetic field H. (a) Sam-
ple 1 is the most metallic sample reported. The H = 0 data are offset by 1 � 10-4
-1 for
clarity: other H data are not offset. With increasing H > 1 KOe, dI=dV increases. (b) Sample
2 is very close to the MIT at H = 0. As H is increased there is a transition in the bias de-
pendence of the conductance. () Sample 3 is metallic for H > 50 KOe and (d) Sample 4 is
metallic for H > 60 KOe.

in a disordered system [8]. On the insulating side �(T) � e

-

p

T

0

=T, indicating variable
range hopping (VRH) in the presence of a soft Coulomb gap [20].

� All Gd based systems, in the doping range studied, show pronounced negative magne-
toresistance (MR). The MR increases on reducing x (towards x



), on decreasing T, and
on increasing h. YSi samples of comparable composition show a significantly smaller,
positive, MR.

� The field dependence of conductivity is seen to arise principally from variations in �
0

in the metallic phase [21], and from the variation of T
0

in the insulator [22]. So, the
dominant temperature dependence of the conductivity in the metallic phase arises from

Coulomb effects, driving the
p

T, but the MR arises almost entirely from variations in the
T = 0 conductivity.

� For GdSi samples with x . x


a magnetic field can drive the system metallic. Near this
field driven IMT, �

0

varies as (h- h



), h


being the field at which the IMT occurs.
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Figure 4.3: Magnetic entropy developed -vs- T for a sample. The dashed line is the entropy
from the extrapolated C

mag

. Inset: C
mag

-vs- T with the extrapolation shown as a dashed
line. T

f

= 5:2 K in this case and Rln(2S
Gd

+ 1) = 17:3 in the units shown.

4.2.2 Tunneling DOS:

The low energy DOS, Fig.2, has been studied [18], from measurement of the tunneling con-
ductance, across the field driven IMT. These measurements provide direct information on
the evolution of the correlation gap [8] (dip in DOS at �

F

) near the metal-insulator transition
and the Coulomb gap [20] in the insulating phase. The principal conclusion from these mea-
surements is that, for the field tuned transition, the density of states at the Fermi level, N(0),
varies as (h - h



)

2 while �
0

(h) � (h - h



). The critical behaviour near the IMT, therefore,
follows N(0) / �

2, with both the DOS and the d.c conductivity vanishing at the transition.

4.2.3 Specific heat:

The difference in the thermodynamic properties of magnetic and non magnetic systems again
emphasises the role of the doped moments. Even for disordered ‘non-magnetic’ systems
close to the metal-insulator transition the specific heat has a contribution arising from ‘local
moments’ [23]. This arises because electrons can behave like localised S = 1=2 objects in the
presence of disorder and strong EE interactions [24].

Naively, we would have expected that after subtracting out the specific heat of the non
magnetic analog the ‘high temperature’ entropy of the magnetic system would correspond
to S0(1) � n

sp

log(2S + 1). Results on GdSi, Fig.3, differ from this:

� Specific heat measurements indicate that at ‘high’ temperature S
mag

(T) =

R

T

0

dT

0

C

mag

V

=T

0

is larger [16] than S0(1) by approximately 50%! The total magnetic entropy tends to
saturate, at this (larger) value by T � 60- 70 K. A simple minded estimate [16] suggests
that the additional entropy can be accounted for by � 2 spin 1=2 moments (conduction
electrons) for each Gd moment.

� C

mag

V

should vanish as T! 0, however, down to 5K, it shows no sign of a downturn [16].
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Figure 4.4: � for x = 0:14. �
d

was measured in 100 Oe after cooling (ZFC) or at 300 K (FC).
�

a

was measured in 135 Hz, 4 Oe, after cooling to 10 K in zero field. Line is a Curie Weiss fit
above T

f

. Inset: same data on an expanded scale.

Figure 4.5: (a) �(T) for x = 0:036 - 0:19 measured at 135 Hz in a 4 Oe field. Inset shows T
f

(from peak in �
a

) -vs- % Gd. (b) Inverse �
d

(measured in 100 Oe) -vs- T. Dashed lines are
Curie-Weiss fits. Solid line in (b) is the Curie law for non interacting Gd moments.
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This suggests that the peak in Cmag

V

occurs somewhere below 5 K. At high temperature
the magnetic and non magnetic systems have the same C

V

.

4.2.4 Magnetism:

The doped Gd atoms possess a moment J = S = 7=2, arising from the half-filled f shell. The
coupling between the randomly located moments arises primarily through mediation by the
conduction electrons. The overall magnetic effects also have contributions from the ‘local
moments’ in the conduction electron system, alluded to in the previous paragraph. The basic
observations on the magnetism, Fig.4-5, are:

� Measurements at high fields, h � 1 T, show a magnetisation growing as � 1=T, i.e, free
moment like response. However, measurements of � at low field (h � 10 mT), reveals a
transition [17] to a spin glass state at a temperature T

f

� 1 - 6 K depending on doping.

� There is a distinct difference between the field cooled (FC) and zero field cooled (ZFC)
susceptibilities �(T); the �

FC

saturates to a higher value as T! 0.

� The freezing temperature increases from T

f

� 1 K at x = 0:04 to T
f

� 6 K at x � 0:20. The
observation of the characteristic [25, 26, 27] (logarithmic) frequency dependent shift of
T

f

confirms that these are indeed spin glasses.

� Fitting a Curie form to the susceptibility, �(x; T) = A(x)=(T-�(x)), reveals that the effec-
tive moment, �

eff

, which can be extracted from A, varies significantly with x. Naively,

this should have been just
p

S(S + 1), independent of x. It is close to this expected (free
moment) value for x � x



and falls off on both the metallic and insulating sides.

� The spin glass freezing does not have any signature in the temperature dependence of
transport properties. The freezing itself is eliminated by fields h & 0:1T.

The magnetic state, which crucially affects electronic transport, is itself determined by
electron spin interaction, the background disorder, and EE effects.

4.2.5 Optical response

There is huge transfer optical spectral weight with increasing temperature in both YSi and
GdSi, Fig.6. This follows the rapid rise in the d.c conductivity itself with increasing T. In
GdSi, such spectral weight transfer can also be driven by applying a magnetic field, for ma-
terials which are on the insulating side of the IMT [19]. The frequency interval over which
such transfer occurs is a couple of orders of magnitude larger that the field scale itself.

4.2.6 Summary

Let us abstract our lessons from these effects, to start on a theory. The primary effect in amor-
phous magnetic systems is electron localisation due to disorder, either due to randomness in
the amorphous structure or disorder in the spin configuration. To a first approximation, the
IMT is driven by varying the mobility edge �



across �
F

. However, as the data indicates, the
transition is not a simple ‘Anderson transition’, driven by structural and spin disorder, in a
non-interacting electron system. Electron-electron interaction effects are clearly in evidence
in (i) the T dependence of �(T), (ii) low energy features in the DOS, N(�), (iii) the ‘excess
entropy’, at high temperature, and (iv) the non monotonic variation in �

eff

across the IMT.
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Figure 4.6: The optical conductivity of a-Si
1-x

RE
x

films at different temperatures (middle
and bottom panels) and magnetic fields (top panels). Insets show differential conductivity
��

T

(!) and ��
H

(!) defined in the text. In all samples the intragap conductivity is strongly
reduced at low T with the spectral weight being transferred to energies exceeding the band
gap of amorphous Si. In a-Si

1-x

Gd
x

films a part of the spectral weight, which is lost at T< 80
K, is recovered in high magnetic field (top panels).
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The transition, however, is not driven by interaction effects per se. Interactions become
relevant near the transition, there the effects of disorder and interactions cannot be decon-
volved, but most of the phenomena occur because the system is strongly disordered. Since we
will study a model without EE effects, note that many of the experimental results can be un-
derstood, at least qualitatively, even without such interaction. These include (i) the existence
of an IMT, from variation in the ‘effective disorder’ seen by the electron, (ii) a magnetically
disordered ground state and the spin glass signatures, and, (iii) the large MR from the field
tuning of spin disorder.

This problem, even without Coulomb effects, is non trivial because: (a) there is no simple
method for accessing transport properties in the regime we are interested in (even if the
‘disorder’ were completely specified), and (b) the ‘spin disorder’ is not specified, the magnetic
state itself depends intimately on the electronic spectrum and wavefunctions.

4.3 Model for a-GdSi

A ‘first principles’ model for a-GdSi will have to consider an underlying ‘random’ structure
in which a fraction x of the sites are occupied by Gd atoms and (1 - x) by Si atoms. The
Gd and Si atoms have different orbital structure so a complicated set of inter-orbital, intersite
hopping possibilities need to be considered. We try to retain the essential features in the
following, simpler, one band model:

H = -t

X

hiji;�



y

i�



j�

+

X

i�

(�

i

- �)n

i�

- J

0

X

�

�

�

:S
�

- �

X

�

n

�

x

�

+

1

2

K

X

�

x

2

�

+H

Coul

(4.1)

This is a tight binding model with uniform hopping t, and an on site potential �
i

uni-
formly distributed between ��=2. The sites labelled ‘�’ are a fraction x of the lattice corre-
sponding to the dopant (Y/Gd) locations. The electron-spin coupling is J 0, S

i

are the S = 7=2

Gd spins, and �
i�

=

P

��



y

i�

�

��

�



i�

, where �
�

are the Pauli matrices. The x
i

are local dis-
placement variables (bond distortions [28]) coupled to the electron density via �, and the
structural stiffness is K. H

Coul

would include Hubbard and long range Coulomb interac-
tions.

The width of the impurity level distribution (�) in YSi/GdSi has been estimated [17] to
be � 200 meV, and the ‘polaron binding energy’ g = �

2

=K � 30 meV. The existence of lattice
polaron effects in amorphous semiconductors had been argued early on by Anderson [28],
and has been revived now [17] in the context of doped a-Si. We think the diamagnetism in
YSi confirms bipolaronic effects, but these lattice effects are probably not very important in
GdSi. There is no simple estimate of the ‘effective hopping amplitude’ to be used in a single
band approximation. However, calculations on the Anderson model indicate [29] that we
need �=t � 14 to localise 10% of the electronic states in the band. This suggests a rather
small effective hopping amplitude � 200 K, if � is 200 meV. The electron-spin coupling J 0S
(called J 0 from now on), arising out of the d - f coupling in Gd, is large. It is estimated to
be � 0:9 eV from photoemission measurements [30] on Gd, but would be somewhat smaller
in the effective one band description that we are using. Although the parameter values have
some uncertainty it is clear that �; J 0 � t. We use �=t = 11, J 0=t = 4, g=t = 0:5, K = 1,
roughly consistent with the experimental estimates. The electron-phonon and electron-spin
coupling are operative only at the dopant sites. We distribute the ‘impurities’ (Y or Gd in the
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Si host) intoNx sites with the lowest potential in any given realisation f�

i

g. This ensures that
at low dopant concentration, the electrons are trapped near the dopant sites. All energies
are measured in units of t, and finally set t � 500 K for comparing our results with the
experiments.

Our principal results using the Hamiltonian above are the following:

� The magnetic ground state in the low doping region is a spin glass with T
f

having
overall scale � t

2

=(J

0

+ �) and following the experimental doping dependence,

� There is a metal-insulator transition for both GdSi and YSi with decreasing x, with
x



Gd

& x



Y

, and a field driven IMT and CMR for GdSi,

� There is large transfer of spectral weight from high to low frequency in �(!), driven by
an applied magnetic field in GdSi.

We explain our scheme of calculation next and then discuss these results in detail.

4.4 Method

Since the Hamiltonian involves �=t; J 0=t� 1 and g=t � O(1) none of these couplings can be
handled perturbatively. To study the properties of this model within a controlled approxi-
mation we use a finite size combination of Monte-Carlo (MC) and exact diagonalisation (ED)
[31]. This approach exactly handles the strong disorder, but treats the spin and lattice vari-
ables as ‘classical’. Since we have 2S � 1, the ‘classical’ spin limit is reasonable, and the
adiabatic approximation should capture the leading effect of electron-phonon coupling.

If we ignore H
oul

to start with, H represents non-interacting fermions coupled to clas-
sical variables S

i

and x

i

, in addition to the random potential �
i

. The �
i

are ‘quenched’
variables while the spin and lattice degrees of freedom are ‘annealed’, with the distribution
Pfx; Sg = Z

-1

Tre

-�H where Z =

R

DSDxTre

-�H is the full partition function for a specific
realisation of f�

i

g.
The ‘exact’ MC+ED allows only small system sizes, O(100) sites, so the key step is to

construct an approximate ‘effective Hamiltonian’ for the lattice and spin variables. Once the
magnetic and phonon problem are self consistently solved, the T = 0 electron problem can be
solved in the classical ground state fS

i

; x

i

g

0

, which itself depends on f�

i

g, finally averaging
over disorder.

4.4.1 The magnetic problem

Formally the magnetic effective Hamiltonian is

H

eff

fSg = -

1

�

log

Z

DxTre

-�H

We have J 0=t � 1, a dilute system (the spins occupy only a fraction x of sites), and strong
disorder in the electron system. There is no perturbative expansion possible in J 0 but the large
J

0 and x � 1 allows a simplification. In this limit the doped carriers are essentially localised
at the magnetic sites, with the electron density falling off exponentially away from the sites.

This generates a pairwise antiferromagnetic coupling, for R
ij

> 1, with J
ij

� (t

2

=J

0

)e

-R

ij

=�(J

0

),
with � / 1=J 0. For neighbouring sites the coupling is ferromagnetic � O(t).
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Figure 4.7: (a)Bond distributions and (b) the freezing scales inferred from the variance of
distributions as well as actual simulations.

In the disordered system, for a given separation R
ij

, the bonds have a distribution. We
construct the distributions P(J; R

ij

) and study the model:

H

eff

fSg =

X

ij

J

ij

S
i

:S
j

:

The bond distribution P(J; R
ij

) is constructed by picking a pair of spins located at separa-
tion R

ij

on the lattice and finding out the energy difference between the parallel and antipar-
allel spin configurations using exact diagonalisation. Fig. 7(a) shows the bond distributions
at R = 2 and R = 3. The presence of both positive and negative bonds hints towards a com-
plicated ground state for the spins. Fig.8.(b) compares the T

f

scales obtained from the actual
simulations with those inferred from the width of bond distributions.

For a pair of moments located at R
i

and R
j

the J
ij

is picked from P(J; R

ij

). This ignores
correlations between bonds in a specific f�

i

g realisation. We simulate the model for different
dilutions, compute the order parameter for freezing,

q(T) = (xN)

-1

X

i

jhS
i

i

T

j

and check that the structure factor has no peaks at any wavevector Q.

4.4.2 Handling the phonons

Solving the magnetic problem establishes the spin glass nature of the ground state, without
yet bringing in the phonons. We simplify the remaining electron-phonon problem by assum-
ing the spins to be frozen in an uncorrelated random manner, ignoring the short range spatial
correlations in the spin glass.
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The effective Hamiltonian for phonons is H
eff

fxg = -

1

�

log

R

DSTre

-�H. At moderate

g and strong disorder there would be ‘frozen’ bond distortions in the ground state, and we
cannot expand about the x

i

= 0 state. To incorporate this effect we use the lowest order
self-consistent expansion, i.e,

H

eff

fxg �

1

2

K

X

i

x

2

i

+

X

i

a

i

x

i

with a
i

= -�n̄

i

, where n̄
i

= hn

i

i, computed in the electronic ground state. The minimum
of H

eff

, i.e the lattice distortion in the ground state, corresponds to x̄
i

= (�=K)n̄

i

. The T = 0

problem now corresponds to electrons in the background of structural disorder, f�
i

g, coupled
to randomly oriented spins with coupling J 0, and density coupled to a phonon field x

i

=

(�=K)n̄

i

, i.e,

H

el
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(4.2)

4.4.3 Transport

We solve this problem through iterative ED. The transport and spectral properties of YSi cor-
respond to g = 0:5 and J 0 = 0, while for GdSi g = 0:5 and J 0 = 4. The ED is done for a
sequence of sizes 6� 6� L, with L = 24; 32; 40; 48. Due to the finite size gaps the d.c. conduc-
tivity cannot be directly computed on finite systems. We use the Kubo-Greenwood formula

to compute the integrated optical spectral weight �
int

(�!) =

R

�!

0

�(!)d!, disorder aver-
age, and invert to obtain the optical conductivity �(!). The extent of averaging varies from
400 - 100 realisations, decreasing with increasing L. We track �(!

ref

; L) with !
ref

/ L

-1,
setting !

ref

= 0:08 at L = 32, and use �
d

= lim

L!1

�(!

ref

; L).

4.5 Results

4.5.1 Spin glass phase

Fig.8 shows q(T), alongwith �(T) at x = 0:2, and the freezing temperature [32] T
f

(x). At x =

0:2 our T
f

� 10K, while experimentally T
f

� 6K. We have done the exact MC+ED simulation
for 43 systems, with the same J 0; � and x � 0:1 and verified that the system freezes into a spin
glass, with T

f

within 10% of our result here.

4.5.2 Insulator-metal transition

Fig.9(a) shows this ‘dc’ conductivity appropriate to YSi and GdSi. Our x


are smaller than the
experimental values and we have not fine tuned parameters to match the data. The � are in
units of �e2=h̄a

0

and the typical values shown in Fig.9(a) are � 0:01. For a
0

� 2Å, �
d

� 400

(
m)

-1, roughly as in experiments [15]. Fig.9(b) shows the L dependence of �(!
ref

; L),
while Fig.9() shows the ‘magnetoconductance’. We have checked that the conductivity in a
‘spin glass’ backgound shows the same trend as for random spins and the numbers match
within � 20%.

To our knowledge there are no standard results on electron systems combining strong
structural disorder and strong coupling to dilute magnetic moments. In the well studied op-
posite limit, �=t� 1; J

0

=t� 1, spin flip scattering actually weakens [4] Anderson localisation,
so large J 0=t is crucial to enhanced localisation in GdSi. We have cross checked the trends in
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�

d

by computing the averaged Greens function G��
0

(r - r 0

) at large �, with increasing J 0.
Using TrG=

P

�

G

��

(r- r 0

) as the indicator of ‘delocalisation’, we find that at jr- r 0

j=a

0

= 6,
TrG grows with J 0 upto J 0 � 0:5 and then falls rapidly. It recovers quickly as the spins are
polarised by an applied field, tracking the change in conductivity.

4.5.3 Spectral features

The DOS computed by us in the magnetic case, at low x, has a broad minimum at �
F

,
Fig.10.(a), since J 0 pulls down states to lower energy. This minimum is not related to the
Altshuler-Aronov ‘correlation gap’ which would be a sharper feature near �

F

(with effects of
H

oul

included). In YSi, the effect of phonons on the disordered background shows up as
a sharp dip [4] in the DOS, Fig.10.(b), since it generates a short range attractive interaction
with U

eff

= -�

2

=K.

4.5.4 Magneto-optical Response

We mimic the effect of finite field, in GdSi, by using a spin distribution with specified mag-
netisation, i.e, finite hS

z

i. Finite m leads to significant redistribution of weight in the DOS,
due to the large J 0, which should be visible in photoemission measurements. The conjunc-
tion of increased mobility, and increased DOS near �

F

, Fig.10.(), leads to the large changes
observed in �(!), Fig.11 The ‘outer scale’ in �(!) is � 5t � 0:25 eV, as in the data [17].

4.6 Coulomb effects

There are certain experimental features for which the ‘Mott’ aspect is essential. These are

principally the
p

T dependence in �
d

(T), the
p

! correlation gap, the T driven spectral
weight transfer in �(!), and the excess magnetic C

V

. Most of these are generic correla-
tion effects, well known in other amorphous systems [4, 7], and unrelated to the magnetic
character.

4.7 Concluding remarks

There is a certain uniqueness to a-GdSi. Disorder, electron-spin coupling and electron-phonon
interactions are features common, in some form, to a-GdSi, Anderson-Mott systems (NbSi,
say) and the CMR manganites. The crucial differences are: (i) GdSi is a strongly disordered
‘dilute’ magnetic system, with strong electron-spin coupling. These features are essential to the
spin glass behaviour and the consequent IMT and CMR. Electron-phonon interactions, even
if present, are not crucial to the physics. (ii) Anderson-Mott systems are also strongly dis-
ordered, but nominally non magnetic. There are no remarkable magnetic field effects and the
physics is controlled by disorder and electron correlations. (iii) Most CMR manganites are
reasonable metals at low temperature, indicating weak intrinsic disorder. They have strong
electron-spin coupling on a periodic Mn lattice, which, in contrast to ‘dilution’, promotes double
exchange ferromagnetism. Electron-phonon (Jahn-Teller) interactions are important in these
systems. The finite temperature IMT and CMR are related to multi-phase coexistence [33]
and not an Anderson transition. GdSi differs also from the diluted magnetic semiconductors
in that the spin polaron concept is not tenable in this high electron density system, due to
strongly overlapping wavefunctions.
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Our study provides a qualitative understanding of the insulator-metal transition, CMR,
spin glass freezing and optical properties of a-GdSi, bridging the gap between Anderson-
Mott transition and CMR systems.
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Chapter 5

Disordered Double Exchange
Magnets

Chapter Summary: We solve the double exchange model in the presence of arbitrary sub-
stitutional disorder by using the SCR scheme. The magnetic properties are studied through
classical Monte Carlo on the effective Hamiltonian while the effective exchange, D

ij

, are
calculated by self-consistently solving the disordered fermion problem. We discuss the con-
ductivity, magnetoresistance, optical response and ‘real space’ structure of the inhomoge-
neous ferromagnetic state, and compare our results with charge dynamics in disordered
La

1-x

Sr
x

MnO
3

. The large sizes, O(10

3

), accessible with the SCR scheme allows a complete
and controlled calculation on this disordered strongly interacting problem. The results re-
ported here are published in Phys. Rev. Lett. 91, 246602-1 (2003).

5.1 Introduction

As discussed in chapter 3, the double exchange (DE) model describes the strong coupling
between itinerant electrons and localised ‘core’ spins in many transition metal systems. The
combination of the strong local coupling, arising typically from Hunds rule, and the ten-
dency of the carriers to delocalise and gain kinetic energy leads to an effective ferromagnetic
interaction in these systems. In many of the ‘real’ systems there are other effects, e.g, electron-
phonon coupling, Hubbard interactions, antiferromagnetic exchange, and disorder, that may
be relevant in addition to DE interaction. While the simultaneous effect of these additional
interactions may be important for realistic modelling, it is useful to have a complete descrip-
tion of simpler models for reference.

We have discussed the methods for approaching the clean DE model in detail earlier. The
clean model has been studied by various authors, using a range of techniques, discussed be-
fore, and is essentially understood. The problem is more difficult in the presence of quenched
disorder, which arises inevitably in real materials [1, 2, 3, 4, 5] from ionic substitution and re-
sulting bond distortions. Disorder leads to an inhomogeneous magnetic state and enhances
the density of low energy spin fluctuations. The resistivity arising out of structural disorder
and magnetic scattering is usually large, comparable to the Mott resistivity [3, 4], violates
Mathiessens rule, and cannot be accessed by standard transport theory. The optical response
reveals a strongly non Drude character [4, 5], implying unconventional charge dynamics, and
rapid loss in low energy spectral weight with rising temperature.
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Most of these features, which depend explicitly on the inhomogeneous spatial character of the
magnetic and electronic state cannot be captured within ‘mean field’ approximations, including
‘dynamical mean field theory’ (DMFT), and current ‘real space’ approaches are severely size
limited in three dimension. In this chapter we use the SCR scheme, generalised to handle
disorder in the electron system. As we will see, the method handles the interplay of disor-
der and spin correlation accurately, and allows us to provide the first controlled results on
charge dynamics in the disordered double exchange (DDE) model. We map out the phase
diagram, clarify the nature of the inhomogeneous ferromagnetic state, and provide results
on magnetotransport and optical response in the model. Our results are directly relevant to
the ‘coherent to incoherent’ crossover [3, 4, 5] in disordered R

1-x

Sr
x

Mn
1-z

Al
z

O
3

, and the
properties of disordered metallic ferromagnets [6] in general.

The combination of structural disorder with even quenched spin disorder leads to a non-
trivial transport problem [7]. For the DDE model there is the additional difficulty of anneal-
ing the spin variables. All these make the DDE model the ideal case for studying the interplay
of strong correlations and strong disorder. Thankfully, compared to other such problems, for
example the 2d electron gas, involving interactions and disorder, the DDE model turns out
to be much more ‘solvable’. In this chapter we hope to address some of the key qualitative
issues concerning the DDE model, e.g,

� When does a spin disorder driven Anderson transition occur in the DDE model?

� How is the ferromagnetic T


affected by Anderson localisation?

� What is the nature of the inhomogeneous magnetic state: in terms of ferromagnetic
cluster formation above T



, and non uniform disordering of the polarised state with
increasing temperature about T = 0.

� What is the impact of quenched disorder on the magnetoresistance?

� Is there a ‘coherent’ to ‘incoherent’ crossover in the optical response?

5.1.1 Earlier work

Previous studies of the model have used variational mean field (VMF) theory [8], DMFT
[9, 10], and the Monte Carlo approach [11] to access the magnetism. Transport properties
have been analysed within DMFT [9] and by using ‘scaling theory’ [12] in the limits of a spin
polarised (T = 0) state and a fully spin disordered (T � T



) state. The real space MC tech-
nique has also been used [11] to study the spin wave spectrum, although, remarkably, there
is no work on transport. Both VMF and DMFT ‘factor’ the correlated spin distribution into
a product of single site distributions. This loses out on spin correlations and trivialises the
paramagnetic phase. In addition, DMFT misses out key vertex corrections in the ‘disorder av-
erage’ process, losing electron localisation effects. The ‘scaling theory’ approach to electronic
transport is valid for T ! 0 and T � T



, but not of much use in the crucial regime around
T



. The only unbiased implementation of step (i) is via Monte Carlo, but the computational
cost of these simulations limits typical sizes to � 4

3 in three dimension [13]. The small linear
dimensions, and the large finite size gaps, make it impossible to reliably estimate transport
properties. This is where the SCR method allows a breakthrough.
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5.2 Model and Method

We work with the following model, defined on a three dimensional cubic lattice.

H = -t

X

hiji�



y
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j�

+

X

i

(�

i

- �)n

i

- J

H

X

i

S
i

:

~

�

i

(5.1)

The nearest neighbour hopping t = 1 sets our energy scale. The potential �
i

is distributed
uniformly between ��=2. We set J

H

=t ! 1. The parameters in the problem are �=t, and
density n (or chemical potential �). We assume classical core spins, with jS

i

j = 1. There are
two key steps in solving for the magnetic and transport properties of a model like this:

1. Evaluate the spin distribution, PfS
i

; �

i

g, controlling the magnetic response, by ‘integrat-
ing out’ the electronic degrees of freedom. fS

i

; �

i

g denotes the full spin configuration.

2. Solve for the charge dynamics; resistivity, optical response, etc, in the background of
structural disorder and equilibrium spin configurations.

Large J
H

=t leads to the usual ‘hopping disordered’ spinless fermion problem.
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The hopping amplitude g
ij

= f

ij

e

i�

ij between locally aligned states, can be written in terms
of the polar angle (�

i

) and azimuthal angle (�

i

) of the spin S
i

as,

g

ij

= os
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2
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�
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�
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2

e

-i (�
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)

The overlap f
ij

=

p

(1 + S
i

:S
j

)=2, while the phase is specified by tan�
ij

= Im(g

ij

)=Re(g

ij

).
This is a problem of quadratic ‘spinless fermions’ with core spin dependent hopping am-

plitudes, moving in the background of quenched disorder �
i

. To exploit the nominally ‘non
interacting’ structure of the fermion part we need to know the distribution PfS

i

g, controlling
the probability of occurence of a spin configuration.

5.2.1 Effective Hamiltonian for spins

We use the SCR method, as described in the previous chapter, for this disordered problem.
We repeat some of the earlier arguments here for easy reference. The partition function of the
system is Z =

R

DS
i

Tre

-�H. To extract PfS
i

g note that for a system with only spin degrees of
freedom, Z will have the form

R

DS
i

e

-�HfSg. Comparing this with the partition function of
the spin-fermion problem we can use

Z

DS
i

Tre

-�H

�

Z

DS
i

e

-�H

eff

fSg

from which it follows that

H

eff

fS
i

g = -

1

�

logTre

-�H

PfS
i

g / e

-�H

eff

fS
i

g (5.3)
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The trace is over the fermion degrees of freedom.

As before, we propose:

-

1

�

logTre

-�H
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X
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D
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ij

(5.4)

whereD
ij

is an effective ‘exchange constant’ to be determined as follows. Define the operator
^

�

ij

= (e

i�

ij



y

i



j

+ h:). This enters the ‘hopping’ part of the electron Hamiltonian. The
‘effective exchange’ is determined as the thermal average of the fermion correlator over the
assumed equilibrium distribution.

We bring together the consistency equations for ready reference:
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This nonlinear integral equation for the D
ij

is solved through the self-consistent MC
scheme to construct the ‘classical spin model’ for a set of electronic parameters, disorder
realisation, and temperature. The equilibrium thermal average of any fermion operator, or
correlation function, ^

O, can be computed using the self-consistent distribution as:

hh

^

Oii =

Z

DfSgPfSgO(S) (5.6)

The average O(S) is computed on a spin configuration fS
i

g, with the configurations them-
selves picked according to the effective Boltzmann weight / e

-�H

eff . We iterate �, at a
given T etc, till the ‘target’ density is obtained.

5.2.2 Monte Carlo implementation

The MC implementation follows the same strategy as in the previous chapter, except for the
additional task of keeping track of the inhomogeneous bonds.

1. Start at high temperature, T � T



, assuming some Dn

ij

(T), where n is the iteration
index. and ‘equilibriate’ the system with this assumed effective Hamiltonian (not yet
self-consistent),

2. Compute the average hhei�ij



y

i



j

+ h:ii over these (pseudo) equilibrium configura-
tions. This generatesDn+1

ij

(T).

3. Compare the generated exchange with the assumed exchange at each bond. Accept
if within tolerance. If converged, then D

ij

represents the correct ‘exchange’ at that
temperature. Else, replaceDn

ij

by Dn+1

ij

.

4. At each temperature and iteration, adjust � as necessary to keep n constant.
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Figure 5.1: H
eff

vs. Exact on L = 4. Panel (a): magnetisation on 43, open symbols ED-MC,
dotted lines H

eff

. Panel (b): effective exchange, averaged over system size: open symbols
ED-MC, dotted lines H

eff

.

At convergence fermion properties can be calculated and averaged over equilibrium MC
configurations of the spin model. For the disordered system the thermal cycle above is re-
peated for each realisation of disorder. In the clean problem, translation invariance forces
the exchange to be uniform at all bonds, while for DDE the iterations generate a bond disor-
dered spin model. Equilibrium properties are calculated as described in the previous chapter,
except for additional disorder average.

5.3 Results

5.3.1 Benchmarking H

eff

against ED-MC

Let us start with a comparison of the SCR scheme with ED-MC for the DDE model. As
we will see, the correspondence between SCR and ED-MC actually improves with increasing
disorder, probably because increasing electron localisation makes the effective short range
model more accurate.

Our first results, Fig.1, are on the disorder dependence of the magnetisation profile,m(T),
at n = 0:3 computed on a 43 system. As emphasised in the earlier chapter on SCR, the H

eff

scheme overestimates T


in the clean system, at high densities, by 15-20%. This is also visible
in Fig.1.(a), however, there is a dramatic improvement in the match with increasing disorder.
The mean (spatially averaged) effective exchange, computed with ED-MC and SCR, also have
a visible difference at weak disorder, but are virtually indistinguishable at � = 6 & 12.

Fig.2, left panels, shows some more data on thermodynamic indicators compared at � =

6 and n = 0:3. Both the mean exchange and internal energy are accurately captured over
the entire temperature interval by the SCR scheme. Lastly, Fig.2, right panels, shows the real
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Figure 5.2: Left panels: Comparing average bond strength and energy between ED-MC and
SCR. Right panels: Comparing real space density patterns. Top row: ED-MC, bottom row:
SCR. Temperatures, from left to right, are T � 2T



; T



; 0:1T



space density pattern computed for the same realisation of �
i

and it is clear that in addition
to overall thermodynamic features, the present scheme captures detailed spatially resolved
properties as well. This is primarily due to a faithful solution of the Schrodinger equation in
computing the effective exchange, exactly handling the underlying disorder, and would be
vital in the phase coexistence problem discussed in the next chapter.

5.3.2 Phase diagram

Fig.3 shows the “global” phase diagram of the DDE model. The phases are ferromagnetic
metal (FM), ferromagnetic insulator (FI) and the corresponding paramagnetic variants PM
and PI. We have studied the problem at n = 0:3 and n = 0:1, varying disorder from the
perturbative end to the localisation regime. Fig.3.(a). superposes the results at n = 0:3 and
n = 0:1, appropriately scaling the disorder and temperature. The disorder (x axis) is mea-
sured in units of the critical disorder for Anderson localisation in the spin polarised phase,
while the temperature (y axis) is measured in terms of the T



of the non disordered model (at
the appropriate density). The critical disorder for the PM-PI crossover, or the disorder depen-
dence of T



need not be ‘universal’ but seems to follow the same overall trend at moderate n.
Fig.3.(b) shows the ‘true’ phase diagram specifically at n = 0:3.

The T


of DE models is approximately related to the internal energy change: T


log(2S +

1) � E(T



) - E(0), which in turn is related to the kinetic energy, K, at T = 0. At small �
and T = 0, K(�) � K(0) - �

d

�

2, where �
d

is the ‘local’ density response function. At strong
disorder, in the ‘localised’ phase, K(�) / t

2

=�. The correspondence of these limits with
the inferred T



(�) is visible in Fig.3.(b). Note that even at strong localisation, � � 24, local
excursion of the electrons can still sustain a T



� 0:05, which would be � 75K for t � 150meV.
DMFT and VMF also provide qualitatively similar trends in T



.
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Figure 5.3: (a). Approximate ‘universal’ phase diagram of the DDE model. For a specified
electron density, n, � is measured in units of the T = 0 critical disorder, �FM



(n), while T is
measured in units of T



(n;� = 0). Our data for n = 0:1 (circles) and n = 0:3 (squares) are
described approximately by a common fit. (b). Actual phase diagram for n = 0:3.
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Figure 5.4: (a): Temperature dependence of magnetisation at n = 0:3, with � increasing from
0 - 24. The inferred T



(�) is shown in Fig.3. (b): Comparison of m(T) obtained via ‘exact’
MC and H

eff

on a 43 system at n = 0:3. Disorder average over 8 realisations in both case.
(): The scaled magnetisationm(T=T



(�)), at n = 0:3;for � = 0 and � = 24.
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Figure 5.5: Real space images, top surface of a 10 � 10 � 10 system with PBC, at n = 0:3 and
� = 6, for a specific realisation of disorder. First row: electron density distribution, hn(r)i

T

,
second row: effective exchange,D(r; r + Æ : T), third row: nearest neighbour spin correlation,
f

2

= hS(r):S(r + Æ)i

T

. Temperatures along the row are, T=T


� 1:2; 0:9; 0:6 and 0:2. Dark
regions correspond to high density (top row), strong exchange (central row), and strong FM
correlation (bottom).

5.3.3 Magnetism

Fig.4.(a) shows m(T) with increasing disorder, at n = 0:3, from which the data in Fig.3.(b)
was inferred, while Fig.4.(b) compares the m(T) computed with H

eff

with the ‘exact’ MC at
� = 6. Although the asymptotic behaviour of T



(�) is easy to motivate, Fig.4.() provides
the first indication that the properties of the disordered ferromagnet cannot be understood
by merely scaling T



. Even though the T = 0 state is fully polarised, at low finite T the ‘weak’
bonds lead quickly to local disordering. The magnetisationm(T=T



) falls more sharply at low
temperature in the disordered system [6]. The inhomogeneous character, and correspond-
ingly wide distribution, of the ‘exchange’ leads to an overall increase in the density of low
energy magnetic excitations. In addition to suppressing m(T) it enhances the specific heat,
C

V

(T=T



), and reduces the spin wave stiffnessD
SW

[11].

5.3.4 Spatial inhomogeneity

The real space images, Fig.5, illustrate the inhomogeneous freezing into a ferromagnetic state
in a ‘cooling sequence’, left to right. The density profile hn(r)i, first row, remains unchanged
over the T range of interest, 0- 1:2T



. The exchange,D
ij

(T), central row, is strongly spatially
inhomogeneous, but as a whole not strongly T dependent. The bond distribution, P(D;T)
(not shown), reveals that weak bonds at low T get quickly weakened with increasing Twhile
strong bonds are essentially T independent. The thermally averaged nearest neighbour spin
correlation, f

2

= hS(r):S(r + Æ)i
T

, highlights the inhomogeneous disordering of the polarised
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Figure 5.6: (a): Temperature dependence of resistivity at n = 0:3. We plot �(T;�) - �(0; �)
normalised by �(0:4; �) - �(0; �), shifting successive curves by 0.5 for clarity. T



is marked
by an arrow on each curve. (b): Resistivity at T = 0, �

0

, and at T = 0:4, �
inf

, with increasing
disorder. Note the clear violation of Mathiessens rule even at � = 2, which would have
required these curves to be parallel. () Resistivity normalised to maximum value (� 10

4

),
and m(T) at n = 0:1 and � = 12 illustrating the FM ! PI transition. (d): Variation in T



with residual resistivity. Note the logarithmic scale on the x axis. (e): The magnetoresistance
(�(T; 0) - �(T; h))=�(T; 0) at n = 0:3: � = 0 (lower set) and � = 6 (upper set). The � = 6 set
has been vertically shifted by 0:8. Field values are h = 0; 0:02; 0:05; 0:10.

state with increasing T (white regions, two panels on the right), and the surviving local order
for T> T



(left panel).
These results suggest the possible correlation between spatial inhomogeneity in the mag-

netic state and the bulk thermodynamics, for example the quicker disordering of the ferro-
magnetic state with increasing temperature, and the sharper fall inm(T).

5.3.5 Transport and metal-insulator transitions

The interplay of thermal spin disorder and ‘frozen’ structural disorder also affects the charge
dynamics. Increasing � increases the residual resistivity (�

0

), with �
0

� �

Mott

at � � 10. The
resistivity deep in the paramagnetic phase (�

inf

), tracked at T = 0:4 in Fig.4.(b), is not simply
the additive contribution of structural and spin disorder. If Mathiessens rule were obeyed,
�

inf

- �

0

should have been constant.
The deviation arises from interference between structural and magnetic scattering and is

clearly observed in the metallic Re
1-x

Sr
x

MnO
3

, at x = 0:4, with Re being, La, Pr, Nd [4], and
in La

1-x

Sr
x

Mn
1-z

Al
z

O
3

, at x = 0:3, varying z [3]. This ‘interference’ is beyond Boltzmann
theory. With a

0

� 4Å, �
Mott

would be � 5 m
cm in the manganites. For the ‘disordered’
LaSr family, as �

0

=�

Mott

varies from 0:005-0:04 with increasing disorder, the corresponding
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Figure 5.7: size dependence of (a) the magnetisation and (b) the conductivity. Inset shows
the �(T) obtained from the L!1extrapolation of the conductivity.

�

inf

=�

Mott

increases from 0:4 - 1:5 [3, 4].

Fig.6.(a) shows the normalised resistivity Æ�(T) = (�(T) - �(0))=(�(0:4) - �(0)) for � =

0; 2; 6. The shift in T


in this disorder regime is quite small, but Æ�(T=T


) quickly changes
character with increasing disorder. The more prominent short range spin fluctuations in the
disordered system couple to the diffusive electrons leading to a sharper rise in �(T). While
most of the rise in the ‘clean’ system occurs in the vicinity of T



, the rise is spread over a wide
interval in the disordered system.

Fig.6.(). shows data at n = 0:1 and � = 12 to illustrate the FM-PI transition. We work
with this lower density because the MIT is easier to access. We solve the full problem for
sizes 6 � 6 � L, with L = f6; 12; 24g, disorder average, and extrapolate the computed ‘d.c
conductivity’ to L ! 1. This is crucial to capture ‘Anderson localisation’ in finite systems.
The transport in the insulating phase is controlled by activation to the mobility edge. The
detailed size dependence from which we infer the finite temperature ‘Anderson transition’
(more a crossover) is shown in Fig.7.

The correlation between T


and residual resistivity has been experimentally explored [1, 2]
and Fig.6.(d) highlights the fall in T



as �
0

heads towards the Mott limit.

Our results on MR, Fig.6.(e), indicate that in the intermediate disorder regime the MR is
actually smaller in the disordered problem than in the clean system. The MR is 1-�(T; h)=�(T; 0).
The minimum �(T; h) is limited by �

0

, the residual resistivity. With increasing �, �
0

grows,
limiting the MR. The MR rises again only when� is large enough to drive a finite temperature
FM-PI transition.
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Figure 5.8: Optical conductivity at n = 0:3. (a). � = 0, (b). � = 4, (). � = 6, at h = 0,
and (d). � = 6 at T � T



. Other parameters indicated in the figure. Inset in panel (d) shows
the integrated spectral weight, N

eff

(T), (see text) derived from the data in panel (). Data
averaged over 4 - 8 realisations of disorder.

5.3.6 Optical response

The optical response of the system, at n = 0:3 and� = 0; 4 and 6, is shown in Fig.8. Panel (a):
shows �(!) at � = 0 and the Drude feature survives even for T � 2T



with �
d

� 6�

Mott

.
For � = 4, however, panel (b). reveals that �(!) changes from a Drude form for T . T



to an essentially ‘flat’ incoherent response at T � 2T



. At 2T


, �
d

� 2�

Mott

. This response
is roughly like La

1-x

Sr
x

MnO
3

at x � 0:4 [4]. At even larger disorder, � = 6, the response
is non Drude even down to T = 0:2T



, and becomes markedly so, with a finite ! peak, as
T is increased. The apparently

p

! rise results from the intimate coupling of the diffusive
electrons to spin fluctuations via the hopping modulation. For � = 6, �

d

� 2�

Mott

at
T = 0, and �

d

� �

Mott

at T � 2T



. This is like the response in (Pr,Nd)
1-x

Sr
x

MnO
3

at
x � 0:4 [4]. We predict that the response will be similar at x = 0:4 in La

1-x

Sr
x

Mn
1-z

Al
z

O
3

at z � 1% - 2%. The inset to panel (d). shows the integrated low frequency spectral weight

N

eff

(!

0

; T) =

R

!

0

0

�(!;T)d!, at! 0

= 2. There is a 40% loss in spectral weight in the T range
0 - 2T



. Our energy cutoff in N
eff

roughly corresponds to ! 0

� 0:3eV in the manganites.
Panel (d): shows the magneto-optical response at � = 6 and T � 1:2T



.
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The non Drude relaxation with �(!) having a finite ! peak occurs in a regime where
d�=dT> 0, as in conventional metals, but the charge dynamics is highly diffusive as expected
in a system with strong ‘effective disorder’. The change from ‘coherent’ to ‘incoherent’ dy-
namics occurs in �(!;T) when �

d

(T) � �

Mott

. This general feature is true of the PM phase
of all the manganites.

5.4 Conclusions

In this chapter we have discussed an essentially exact solution for double exchange model
in the presence of arbitrary substitutional disorder. Our benchmarks indicate that the SCR
approximation to the DDE model works excellently at strong disorder. Using this as our
annealing strategy, and the transport calculation methodology evolved by us, we have stud-
ied (i) the inhomogeneous magnetism and spatial variations in the system, (ii) the variation
of ferromagnetic T



with disorder, (iii) the detailed transport properties, including the ther-
mally driven Anderson transition, and (iv) the coherent to incoherent crossover in the optical
response with increasing temperature. We believe this is one of the few complete solutions
of a strong disorder strong coupling problem available in the literature.
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Chapter 6

Nanoscale Phase Coexistence

Chapter Summary: This chapter discusses the nanoscale phase coexistence of ferromagnetic
metallic (FMM) and antiferromagnetic insulating (AFI) regions in a two dimensional sys-
tem by including the effect of AF superexchange and weak disorder in the double exchange
model. We solve this problem using the SCR scheme and uncover a window of phase coex-
istence. We study the cluster pattern for varying electron density, disorder, and temperature.
We also track the magnetic structure, obtain the density of states, with its ‘pseudogap’ fea-
tures, compute the transport properties in this strongly inhomogeneous system, and demon-
strate a singular low field response. Our results are probably the first fully microscopic esti-
mate of the resistivity in the phase coexistence regime. Some of the results here appear in our
paper Phys. Rev. Lett. 92, 126602 (2004).

6.1 Introduction

The issue of multiphase coexistence in transition metal oxides has been brought to the fore [1,
2] by a set of remarkable recent experiments [3, 4, 5, 6] on the manganites These experiments
probe the atomic scale magnetic correlations, structural features, or ‘conducting’ properties,
i.e tunneling density of states, through local spectroscopy. The bulk thermodynamic and
transport properties of these systems, including the ‘colossal magnetoresistance’ (CMR) seem
to have a correlation with the physics of electronic phase coexistence as visualised in these
nanoscale experiments.

Establishing a first principles theoretical connection between cluster coexistence and ‘anoma-
lous’ transport, however, has been difficult. Only real space Monte Carlo (MC) techniques
[7] allow access to the cluster phase, and accessible sizes are too small to study transport or
quantify the effect of disorder. The approach in current use [8] is phenomenological, using
classical resistor networks to model the data within a ‘percolation scenario’. While ‘per-
colation’ probably plays an important role in transport, standard percolation theory [9] is
inadequate [10] to explain the data. More fundamentally, such an approach does not explain
the temperature and field dependent resistance of the ‘building blocks’, or correlations and
hysteresis in the cluster distribution, or the dependence of bulk resistance on ‘spin overlap’
between clusters. In this chapter we address these questions within a ‘spin-fermion’ model
employing the SCR approach to the DE model, studying coexistence effects in two dimen-
sional (2d) systems upto � 32 � 32. This allows us to probe the regime L

S

� L̄



� a

0

, where
L

S

, L̄


and a
0

are system size, typical cluster size, and lattice spacing, respectively. We study
the coexistence regime, obtain the typical cluster size, and calculate the spectral density and
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Figure 6.1: Schematic illustration of sub-micrometer scale coexistence of charge ordered in-
sulating (dark area) and ferromagnetic metallic (white area) domains. The typical size of the
domains is 0:5�m. (a) At zero field the magnetisations of ferro domains are random, but
all domains can be aligned by applying a field of order 4 KOe. The figure above is from M.
Uehara et al., Nature 399, 560 (1999).

conductivity in the mixed phase. Our results are probably the first to clarify the connection
between nanoscale phase coexistence and transport in a fully quantum mechanical itinerant
electron problem.

6.1.1 Scenario

The coexistence of two phases with distinct electronic, magnetic, and possibly structural,
properties is best conceived at T = 0 in a clean system. For a specified chemical potential, �,
the ground state configuration of the spin and lattice variables, fX

i

g say, assumed classical, is
determined by ÆE=ÆX

i

= 0, where EfX
i

;�g is the energy of the system in the fX

i

g background.
The minimum, E

min

(�), usually occurs for a unique fX

i

g at each �, and in this background the
electron density n(�) is also unique. However, in the presence of competing interactions, two
distinct fX

i

g configurations could be degenerate minima of E at some �. The corresponding
� = �



marks a first order phase boundary, and the two ‘endpoint’ densities, n
1

and n
2

bracket
a region of coexistence. There is no homogeneous phase with density between n

1

and n
2

. In
this regime the system breaks up into two macroscopic domains, with density n

1

and n
2

.

The effect of disorder is to convert this regime of macroscopic phase separation to mesoscale
or nanoscale cluster coexistence of the two phases. Cluster coexistence can lead to an insulator-
metal transition (IMT) when the ferromagnetic ‘metallic’ clusters percolate, generating a con-
ducting pathway through the system. Conversely, with increasing temperature, the ferro-
magnetic clusters can fragment due to spin disorder, leading to a rapid rise in resistance due
to disruption of the conducting backbone. An applied field can also have a remarkable ef-
fect in the poorly conducting low temperature phase, if the system is near the critical density
for the IMT. The magnetic field can polarise the large but ‘uncorrelated’ cluster moments,
enhance inter cluster tunneling in these half-metallic systems, and enormously enhance the
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conductance. This is believed to be the origin of the large low field magnetoresistance (MR)
in the low T



manganites. Overall, there is a fascinating variety of IMT’s driven by varying
density, temperature, or applying a magnetic field. The ‘real’ model of manganites involve
coupled electronic, spin, lattice and orbital degrees of freedom, but the essence of phase coex-
istence and the insulator-metal transitions described above can be accessed even in a simple
model of coupled electronic and spin degrees of freedom.

6.1.2 Microscopic approach

While the cluster coexistence scenario is attractive and plausible, and provides a conceptual
framework for analysing the transport data, first principles calculations on the underlying
disordered interacting models have proved to be rather difficult. Even assuming that the
spin (or phonon) degrees of freedom that couple to the electrons can be treated classically, the
‘real space’ approach required in this inhomogeneous problem requires computational effort
that rapidly scales with system size, withN limited to � 100. Results on such systems, mostly
in two dimension, suggest the validity of the coexistence argument, in terms of the emerging
spatial structures, but cannot quantify the effect of disorder on the cluster distribution. More
seriously, given the large finite size gaps in small lattices, it is impossible to access the d.c
conductivity and analyse metal-insulator transitions.

Due to the difficulty in accessing transport properties from microscopic calculations, there
have been attempts to construct a ‘resistor network’ theory, replacing the coexisting clusters
by ‘metallic’ or ‘insulating’ resistors, and computing the overall resistance of the network.
The results that emerge bear some resemblance to the experimental data, but are strongly de-
pendent on the phenomenological input for their success. The specific limitations of this ap-
proach are: (i) the ‘resistance’ of the network elements have to be inferred from experiments
depending on the endpoint compositions in the coexistence regime, (ii) the quantum charac-
ter of electron transmission between clusters, and possible quantum interference effects, are
lost out in a Ohm-Kirchhoff law formulation, (iii) the sensitivity of intergrain transmission
to core spin orientation (and the resulting low field MR) cannot be captured.

Since a frontal attack on the problem comes up against a computational barrier, the issues
above suggest the need for controlled approximations to bridge the gap between ‘exact’ sim-
ulations and the phenomenology. This is where the SCR approach allows a breakthrough.
We use it to solve this problem, first comparing our results in detail with exact simulations
on small lattices, and then extending the study to large lattices to examine transport and spa-
tial patterns. We provide detailed results on the spatial structures, the electronic density of
states (DOS), the resistivity, and the full optical response. We also describe the evolution of
these properties in response to a magnetic field, and the origin of colossal ‘tunneling magne-
toresistance’ (TMR) in the model.

6.2 Model and method

Our model is H = H

el

+H

AF

+H

mag

in 2d, with:

H

el

=

X

hiji;�

t

ij



y

i�



j�

+

X

i

(�

i

- �)n

i

- J

H

X

i

S
i

:

~

�

i

(6.1)

and H
AF

= J

S

P

hiji

S
i

:S
j

, and H
mag

= -h

P

i

S

iz

. The hopping t
ij

= -t for nearest neigh-

bours, and �
i

is a random on site potential uniformly distributed between��=2. We assume
J

H

=t!1, and set the reference scale t = 1, We choose to work with � = 1:0 and J
AF

= 0:05,
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and study electronic properties for n in the vicinity of 0:1. We vary � as needed to keep n
constant. We use jS

i

j = 1. All our energies, temperature and frequency are measured in units
of t.

As in the previous chapters, the limit J
H

=t ! 1, leads to a spinless fermion model, and
the SCR approximation leads to the following effective spin Hamiltonian:

H

eff

fS
i

g = -(1=�)logTre

-�(H

el

+H

AF

)

� -

X

hiji

D

ij

f

ij

+ J

S

X

hiji

S
i

:S
j

(6.2)

D

ij

is determined self consistently as the average of ^�
ij

= (e

i�

ij



y

i



j

+ h:) (see chapter 3.)
over the assumed equilibrium distribution.

Although the D
ij

enter as ‘nearest neighbour’ exchange, they arise from a solution of
the full quantum statistical problem in the disordered finite temperature system. In the presence of
competing interactions and quenched disorder, this leads to a set of strongly inhomogeneous,
spatially correlated, and temperature dependent ‘exchange’D

ij

.
We work at specified mean density, fixing � through iteration. At consistency, fermionic

properties are computed and averaged over equilibrium spin configurations. Transport prop-
erties are computed using the Kubo formula employing sizes � 24 � 24 to 32 � 32 and av-
eraged typically over 30 realisations of disorder with averaging over � 50 equilibrium spin
configurations at each T for each realisation of f�

i

g. The conductivity results are in units of
(�e

2

)=h̄.

Our principal results are:

� The direct visual evidence of cluster coexistence, and dependence of cluster size on
temperature, disorder and electron density.

� The temperature and disorder dependence of spectral density, recovering the pseudo-
gap feature.

� A microscopic estimate of the resistivity, and its correlation with the spatial structures.

� The strong low field response in magnetisation and conductivity, due to alignment of
‘cluster moments’, inaccessible in a percolative framework.

In what follows we first discuss the benchmarking of SCR results against ED-MC for the
coexistence problem and then present our results, first at zero field and then in the presence
of a magnetic field.

6.3 Benchmarking H
eff

against ED-MC

Let us start with the validity of our effective Hamiltonian, and its ability to capture the correct
physics at coexistence. Since the parameter space is large, the checks are focused on n = 0:1

and � = 1:0, tracking results across disorder realisations and with varying temperature.
Fig.2 compares the variation of carrier density with chemical potential obtained within

the two schemes at low temperature. The discontinuity at � = 0, between the undoped
AF state and the ferromagnetic metal signifies a first order transition, and the instability of
homogeneous phases for 0 < n . 0:25. There is only a slight difference in the ‘critical’ �
at which the transition occurs, obtained within the two schemes. Disorder � = 1:0 smears
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out the discontinuity (on these small lattices) and ‘allows’ stable mean densities between
n = [0; 0:25℄. The disorder averaged n - � data is almost identical between ED+MC and
H

eff

.
The ‘density field’ which emerges is of course not homogeneous and involves coexisting

regions of FMM and AFI. While the detailed cluster pattern and correlation length can only
be studied by usingH

eff

on large lattices, we want to emphasize the ability ofH
eff

to capture
the same spatially resolved patterns as ED-MC for a specific realisation of f�

i

g.
In Fig.3 we show the ‘cluster pattern’, as encoded in the nearest neighbour spin correla-

tion, for both H
eff

and ED-MC for two realisations of disorder. The first pair of rows belong
to one realisation of f�

i

g and the next pair to another. Within a pair, the top row tracks the
result with ED, the bottom row with H

eff

. Temperature varies along the row, from � 2T



to
T = 0 (left to right). As the results indicate both schemes lead to the same ‘fingerprint’ of
the underlying disorder. Careful scrutiny reveals that H

eff

slightly overestimates the local
ferromagnetic tendency (dark patches), something we have noticed in the clean DE model as
well. The basic reason thatH

eff

reproduces such detailed features faithfully is that it actually
solves the same Schrodinger equation as ED-MC, albeit fewer times, in the same disordered
background.

Now the transport, fig.2. extreme right. We discuss the transport calculation method
further on, for the moment we note that our resistivity is the inverse of the (thermal and
disorder averaged) optical conductivity �(!) at the scale of mean level spacing in the system
(! = !

L

= �W=L

2

;W = 8t; � � 5). The ‘resistivity’ so computed is compared between
ED-MC and H

eff

in the next figure. We also show the associated magnetisation.
There are two features to note: (i) transport properties match reasonably between the

two schemes, and (ii) the small size (and hence large!
L

) ‘resistivity’ does not show the crucial
turnaround feature that would signify low temperature metallicity (and shows up only on
larger systems). It is crucial to break the size barrier and access transport at lower frequency.

6.4 Results at zero field

Having established the credibility of the SCR scheme in this context we now discuss results
obtained using this method on large lattices, � 24 � 24 to 32� 32.

At low electron density, the competetion in the DE+SE model is between a f�; �g AF phase
and a ferromagnet (FM). We set J

S

= 0:05 and scanned in � to locate the �


for the first order
boundary. The density changes from n = 0 to n � 0:20 at the discontinuity. Moderate
disorder smooths out the discontinuity in n(�) converting it to a sharp crossover.

We fixed J
S

= 0:05 and probed the coexistence regime, n � 0 - 0:2, with varying electron
density, temperature (T), and � = 0:2 and � = 1:0. All the results are obtained by cooling the
system from the high T paramagnetic, approximately homogeneous, phase.

6.4.1 Spatial structures and cluster size

The two panels in Fig.4 show the thermally averaged nearest-neighbour spin correlation. The
mean density n in these figures vary from 0:06 - 0:15 from the top row to bottom the row
in each panel, straddling the coexistence region, the disorder is � = 0:2 (left panels) and
� = 1:0, (right panels), and the data is obtained in a cooling sequence. Along each row the
temperature varies as T = 2T



; 1:2T



; 0:8T



; 0:1T



for both panels, as one moves from left to
right.

The figure provides direct visual evidence of ‘clustering’. At fixed density and tempera-
ture, the cluster pattern for stronger disorder (� = 1:0) is more fragmented than for � = 0:2.
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Figure 6.4: Cluster pattern with varying density, temperature and disorder. Left Panel: � =

0:2, Right Panel: � = 1:0. Electron density n = 0:06; 0:08; 0:10; 0:12and0:15 from top to
bottom and temperatures T = 2T



; T

+



; T

-



and 0:1T


from left to right in each panel.
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The contrast reduces with increasing T, as the spins in the AF regions fluctuate out of an-
tiparallel alignment.The large density regions sustain a finite local magnetisation whereas,
the empty regions give rise to local AFM.

Fig.5. shows the typical size of FMM clusters, inferred from a Lorentzian fit to the mag-
netic structure factor, i.e, Sq � (q

2

+ �

-2

)

-1. The resulting correlation length depends on n,
� and T, decreasing with increasing disorder and T, and increasing with increasing density.
The main panels, (a) and (b), highlight the n dependence at different T and �, while the in-
set replots the same data to highlight the dependence on disorder. To completely understand
the variation of cluster sizes with temperature, density and disorder one would have to solve
the problem on even larger lattices.The dependences, overall, are intuitive, and correlate well
with the transport data that we discuss further on.

6.4.2 Magnetic properties

Fig.6 shows the magnetisation, m(T), and the AF peak in the magnetic structure factor Sq at
q = f�; �g to illustrate the evolution from the AF to the FM phase with increasing n. Panel
(a) - (b) are at � = 0:2 and panel () - (d) at � = 1:0. The ‘extremal’ densities are either
strongly AF or FM, while for n � 0:08 - 0:12 both FM and AF reflections have finite weight.
Panel (e) tracks the ‘characteristic temperature’, T

h

(n;�), identified from the maximum in
�

2

O=�T

2 whereO is the appropriate order parameter (of the FM or AF phase). In the shaded
region, 0:10 . n . 0:14, it is difficult to resolve the T

h

accurately. Panel (f) shows the change
in ‘saturation magnetisation’ m(T = 0) with increasing n and changing disorder. The small
moment regime,m . 0:1, for n . 0:1 is a ‘ferro-insulator’ phase, as we will discover from the
transport data. In this regime the moments in different clusters are only weakly correlated.
It would be very interesting to see the effect of a magnetic field on these weakly coupled FM
regions. We will discuss these effects later in this chapter.

6.4.3 Spectral features

Fig.7 shows the low energy density of states (DOS) for n = 0:1. Even at weak disorder, panel
(a), there is a ‘pseudogap’ in the system averaged DOS, at the lowest temperature, T � 0:01.
However, the pseudogap rapidly fills up with increasing T, and the DOS tends towards the
universal profile of the spin disordered 2d DE model. At stronger disorder, panel (b), the
‘dip’ in the DOS at � is deeper. Due to stronger pinning, the clusters, and the gap feature,
survives to higher T, and only for T � T

h

tends to the asymptotic form. The actual form of
this ’dip’ feature in the DOS can be different in the real systems due to the electron-electron
interaction effects. While this data focuses on the system averaged DOS, which can be probed
by photoemission spectroscopy (PES), it would be very interesting to compute local density
of states on this system , which can be studied by tunneling spectroscopy in the experiments.
Since the finite density regions have the DE mechanism operative, the local density of states
there should be metallic. The empty regions would show a gap in the local DOS.
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6.4.4 Results on Transport

Fig.8 shows resistivity, �(T), with varying n and disorder. The comparison of panel (a),
� = 0:2, and panel (b), � = 1:0, indicates that �(T) for stronger disorder is systematically
larger. The trends, however, are similar in the two cases and allows a tentative classification
of the ‘global’ aspects of transport. At both � = 0:2 and � = 1:0 there is a critical density,
n



(�), below which �(T = 0) diverges, indicating the absence of any connected ‘conducting
path’. The inset to panel (b) shows the trend in the T = 0 conductivity with increasing FM
cluster area, a

FM

.
We suggest the following qualitative picture of transport in the coexistence regime based

on the data in Fig.8.

� At low T, and for n > n



(�), there is, by definition, some connected ‘metallic path’
through the sample. It is reasonable to assume that at least in this connected region
the spins are aligned due to DE. Since cluster dimension and electron wavelength are
comparable in our system a large fraction of the resistance arises from the non trivial
geometry of the current path. This scattering is quantum mechanical, and the low T

metallic phase corresponds to a quantum percolative regime [13], for roughly 0:15 & n &
0:08 at � = 1:0.

� With increasing T, the resistance of the conducting network increases due to DE spin
fluctuations and, till the network is disrupted, there is a regime d�=dT> 0. This ‘metal-
lic’ behaviour occurs despite the very large residual resistivity. This is a regime of weak
magnetic scattering on the conducting network. If n � n



, e.g, n = 0:20 in Fig.8.(b), so
that inhomogeneities are weak, �(T) will smoothly increase to the T � T

h

asymptotic
value.

� With further increase in T, in the n & n


regime, the spin disorder can destroy some of
the ‘weak links’, disrupting the conducting network and leading to a sharp increase in
�(T) see, e.g, n = 0:1 in Fig.8.(b). This correlates well with reduction in typical cluster
size with increasing T, discussed in the next paragraph. Depending on n and the extent
of disorder (and system size, in a simulation) there could be a rapid rise or a ‘first order’
metal-insulator transition (MIT). This is spin disorder induced breakup of clusters driving a
MIT.

� Beyond this ‘MIT’ the conduction is through the ‘insulating’ regions, with isolated
patches contributing to nominally activated transport, as visible in Fig.8.(b) for n .
0:12. For T � T

h

, as the structures disappear, Fig.2, and the system becomes homo-
geneous, �(T) is dominated by spin disorder scattering. This is a diffusive regime with
saturated spin disorder scattering, visible for T & 0:08 at all densities.

� Forn < n


, the regime of low density isolated clusters, �(T) falls monotonically, and the
response is typical of low density ferromagnetic polarons in a AF background. This occurs
for n . 0:08 at � = 1:0, and at lower n at � = 0:20.

The variation in the FMM cluster size, discussed earlier, is broadly consistent with the
above description and strengthens the proposed transport scenario.

Controls in transport calculation

Since the present problem involves transport calculation in a complex two dimensional sys-
tem, let us discuss the checks that we have made.
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Figure 6.9: Left panels: Size dependence of (a) the magnetisation (b) the conductivity. Right
panels: Disorder averaged conductivity for (a) the four independent sets of 10 disorder
copies each (b) two independent sets of 20 disorder copies each.
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Kubo formula based calculation are known to be numerically difficult due to the discrete
spectrum of any finite system. This implies that the conductivity cannot be reliably computed
below a scale comparable to the typical finite size gap in a system. This gap, �

L

, is roughly
W=L

2 in a 2d system, with W being the bare bandwidth and L the linear dimension of the
system. This immediately indicates that the true ‘d.c conductivity’ cannot be computed in a
finite system, and we can only hope to compute the finite frequency (‘optical’) conductivity
at a frequency ! � �

L

. Given this complication, and the need for disorder averaging in
this strongly inhomogeneous system, we focus on the qualitative stability of our results with
respect to size variation and disorder average.

Let us recapitulate the arguments put forward in chapter 2. The d.c conductivity involves
matrix elements between essentially degenerate states and cannot be directly computed on a
finite system due to the finite size gaps in the spectrum. However, the optical conductivity can
be computed down to frequencies comparable to the finite size gap (� W=L2, W = 8t in our
case). To be on the safe side we use !

L

= 5W=L

2. At L = 8 this is ! = 0:625t, which is quite
large, while at L = 32 this allows us to access! = 0:04t.

Our results are averaged over 30 copies of disorder, which typically would not be enough
if this were purely a quenched disorder system. However, for each of these thirty copies
there is thermal average over 50 equilibrium spin configurations at each temperature, so the effective
averaging is more extensive than simple disorder average implies. We check the adequacy of
averaging the following way.
The resistivity, �, defined by us, arises from:

�

-1

=

1

N

dis

X

dis

f

1

N

sp

X

sp

�(!

L

;S; �
i

) g

The N
sp

indicates internal thermal average over spin configurations (S), while the N
dis

is
for averaging over realisations of quenched disorder (�

i

). The resistivity is calculated as the
inverse of the thermal and disorder averaged optical response at! = !

L

. Fig.9. right panels shows
�(!

L

; T) itself, rather than the inverse. Right panel(a) shows data over four sets of 10 copies
each (of �

i

) and except at the lowest temperature the 10 copy averages look like one another.
Right panel(b) plots the 20 + 20 data and even the low T correspondence improves.

Now the size dependence. Increasing L allows us to access progressively lower frequency
in �(!), so that at large enough L the �(!

L

) obtained is representative of �(0). The left pan-
els in fig.9. tracks the magnetisation (left (a)) and ‘resistivity’ (left(b)) as a function of T with
increasing L2. While there is significant variation in h�i-1 between the smaller sizes, the vari-
ation is much weaker between L = 24 and L = 32. It is possible that in the present model,
the L ! 1 system would be localised at any disorder, whatever be the pattern of percolat-
ing metallic paths. Even if that were true (and confirming that would require computational
effort beyond present resources) the qualitative lessons regarding transport at cluster coexis-
tence would still be valid, and physically relevant in the 3d context.

The ferromagnetism, left panel(a), weakens with increasing L because of partial cancella-
tion between differently oriented moments in weakly connected clusters. However, by the
time L = 24 the response is reasonably stable.

6.5 Response to a magnetic field

The effect of a magnetic field and temperature can be studied through a host of physical indi-
cators, e.g, the density-density correlation functionD

nn

(q), the spin-spin correlation function
D

ss

(q), the density of states at Fermi level N(�

F

), the magnetisation m(h; T) and of course
the resistivity �(h; T).
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Figure 6.10: Nearest neighbour spin correlation fs
2

= hS
i

:S
1+Æ

i at n = 0:1, � = 1:0. System
size 32 � 32. Field variation along the row: h = 0:0; 0:01; 0:10, and temperature, up the
column, T = 0:06; 0:03; 0:01.

6.5.1 Effect on spatial structures

The pattern for the nearest neighbour spin correlation fs
2

(R
i

) = hS
i

:S
1+Æ

i is shown in Fig.10
for three temperatures and for three fields, h = 0, h = 0:01 (central column) and h = 0:10

(right column). The first row shows the high T paramagnetic phase where fs
2

is small on all
links since the thermal scale is much larger than both the exchange and field scales. It is only
at at h = 0:10 that we see signs of magnetisation. The contrast improves with cooling (left
column) but the field response is similar at the lower temperatures as well, i.e h = 0 and
h = 0:01 are virtually indistinguishable.

For the n = 0:1 case at � = 1:0, where the low T cluster pattern is rather fragmented, and
the h = 0 magnetisation is rather low, . 0:1, the immediate effect of an applied field is to
orient the ‘cluster moments’ parallel to the field. Since the clusters typically have & 10 spins
coupled together even a weak field have a large effect on m(h; T). Although this does not
change the ‘local electronic structure’ and N(�

F

) is mostly unaffected, the parallel moments
allow enhanced tunneling between the FMM domains leading to large low field MR. Since
the cluster pattern does not change (at low fields) the correlation length associated withD

nn

is unaffected. Overall, the main low field effect at low T is alignment of the large ‘cluster
moments’ in the direction of the field and a consequent increase in electron mobility.

At larger fields two other effects come into play. The FMM phase grows in volume, and
residual spin disorder (due to finite temperature) within the domains gets suppressed. The
system now behaves like a canonical ‘clean’ DE ferromagnet, with a large DOS at �

F

. The
bulk magnetisation nears saturation.

6.5.2 Magnetism and transport

While the cluster pattern is insensitive to a weak magnetic field, both the resistivity and
magnetisation respond dramatically. There is essentially a ‘two stage’ response to an applied
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(); (d) constant temperatures. The inset to (d) shows the variation of magnetisation with the
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field (particularly at low temperature) in the coexistence regime. A weak field aligns the large
‘cluster moments’ parallel to the field, without significantly changing the FMM volume frac-
tion. This enhances the tunneling between FMM domains, which may have been supressed
earlier due to random orientation of the cluster moments. The magnetisation rises sharply
and there is an attendant sharp drop in resistivity. At larger field, the FMM volume fraction
itself increases and the transport phenomena can probably be described by a volume fraction
dependent percolative effect.

6.6 Connection with manganites

Our results on coexistence share several generic features with the manganites [3, 4, 5, 6],
but there are key differences too. Apart from the difference between 2d and 3d, these are
(i) the important regime of coexistence in manganites is between FMM and charge ordered
insulator (COI), and crucially involves the Jahn-Teller (JT) phonons. This requires enlarging
our model. (ii) It is supposed that the FMM and COI regions are nominally of equal density,
which is why such domains can survive over �m scale. Our clusters are ‘charged’ due to the
density difference between FMM and AFI. In any real system Coulomb effects [14] would
have to be considered in such a case, which we plan to study separately.

6.7 Conclusions

In this chapter we have presented microscopic results on quantum transport across a regime
of phase coexistence in an itinerant fermion model, and correlated it with thermal evolution
of the spatial structures. This sheds light on several qualitative issues that arise in interpret-
ing transport data and spatial structures on the manganites. A more quantitative comparison
with manganite data requires inclusion of the lattice and orbital degrees of freedom, which
we are currently engaged in.
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Chapter 7

Thesis Summary

In this thesis we have studied magnetism and transport in a variety of disordered interacting
systems. All the models share the common feature of involving (quadratic) fermions coupled
to annealed classical degrees of freedom. This ‘adiabatic’ approximation allows us to exploit
the nominally non interacting character of the quantum problem and provide detailed solu-
tions to a variety of models.

The adiabatic limit, however, by itself does not allow detailed solution of the correlation
models that we have studied, in the absence of further approximations to break the severe
finite size constraint of the standard Monte Carlo technique. We also needed a controlled
method for calculating electronic response functions, e.g conductivity, once the annealing
problem for the classical variables is solved.

In chapter 2 we formulate the linear response based conductivity calculation employing
the Kubo formula, and study several transport problems involving quenched disorder. Our
strategy involves a calculation of the integral of the low frequency optical conductivity and
its systematic size dependence (and inversion) to obtain the d.c response. We tested out our
method on the standard Anderson localisation problem, comparing with available results,
and also obtained several new results in the context of magnetic scattering and the combined
effects of structural and magnetic disorder.

Chapter 3 takes up the annealing problem for strong coupling between fermions and clas-
sical spins. We proposed a scheme for constructing classical spin Hamiltonians from Hunds
coupled spin-fermion models in the limit J

H

=t!1. The strong coupling between fermions
and the core spins requires self-consistent renormalisation (SCR) of the effective ‘exchange’
in the model, either in the presence of inhomogeneities or with increasing temperature. The
method was tested out in detail against the exact Monte Carlo method, found to be accurate,
and used to study magnetism and transport on large lattices in the clean DE problem.

Chapter 4 considers the “Anderson-Mott” transition in amorphous GdSi, involving cou-
pled fermion-spin-phonon degrees of freedom in the presence of strong disorder. The mate-
rial exhibits an insulator-metal transition with varying carrier density, a spin glass phase at
low temperature, and colossal magnetoresistance. In addition to the unusual magnetotrans-
port, electron-electron interactions lead to characteristic features in the density of states and
conductivity close to the insulator-metal transition. We solved this strong disorder strong
coupling problem by successively constructing approximate effective Hamiltonians for the
spin and phonon degrees of freedom and finally solving for electronic transport in the ap-
propriate spin-phonon background. Our calculations highlight (i) how the transport and
magnetoresistance arise from the interplay of structural disorder, lattice polaron effects and
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electron-spin coupling, and, (ii) how the spin glass phase arises from strong randomness in
the magnetic bonds, J

ij

, due to disorder in the electron system.
Chapter 5 considers an application of the SCR scheme, involving the strongly disordered

double exchange (DDE) model. The SCR scheme compares very well with ED-MC in the
disordered case. We mapped out the various magnetic and transport phases of the problem,
including a detailed study of the (thermal) spin disorder driven Anderson transition. We
could also locate a thermally driven coherent to incoherent response in the optical response,
as seen in the disordered wide bandwidth manganites. This study is probably one of the few
numerically exact solutions in a disordered strongly interacting system.

Finally, chapter 6 studies the experimentally vital problem of nanoscale cluster coexis-
tence and the associated electronic transport. A wide variety of probes have demonstrated
the spatial coexistence of ferromagnetic metallic (FMM) and antiferromagnetic (charge or-
dered) insulating (AFI) clusters in the low T



manganites. It is believed that the remarkable
metal-insulator transition and colossal magnetoresistance in (at least) the low T



manganites
is related to phase competetion between FMM and AFI. We studied a minimal model of such
phenomena, considering competing double exchange and antiferromagnetic superexchange
in 2d in the presence of weak disorder. The SCR method was benchmarked in detail against
ED-MC in this model, found to be accurate, and used on large lattices to clarify the spatial
structures and associated transport. Our method allowed a fully microscopic estimate of the
resistivity in the coexistence regime, and mapped out the various metal-insulator transitions
in this model. These results are probably the most important in this thesis. We could also
study the singular low field response in the model, which bears striking similarity to the
huge tunneling magnetoconductance observed in the low T



manganites.
In summary, the thesis allows some methodological advance in terms of transport in dis-

ordered systems, and magnetism in double exchange based models, and provides detailed
solutions to three disordered interacting electron problems. Our more recent work, beyond
this thesis, allows us to handle newer (phonon) degrees of freedom as well, allowing access
to a wide range of materials issues.


