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Abstract

The primary goal of this thesis is to study aspects of non-linear gravitational clustering

in an expanding Universe using N-Body simulations. The thesis can, in principle, be

divided into two distinct parts. The first part deals with the development and study of

performance characteristics of the TreePM method for cosmological simulations with em-

phasis on optimisation, improvement and parallelisation of the method. Because N-Body

simulations are a very important tool in the study of formation of large scale structures,

we also try to address, from a general broader perspective, some of the limitations of

N-Body methods in this part of the thesis. The remainder of the thesis primarily focusses

on using the TreePM code to study a few problems in gravitational clustering. This in-

cludes a study of aspects of clustering of overdense regions in power law models as well as

an analysis of clustering and non-linear scaling relations in a scenario of two-dimensional

gravitational collapse.

The thesis is organised as follows. Chapter 1 summarises the current status of some

important cosmological observations and reviews some of the more general analytical

formalisms (big bang cosmology, perturbation theory, etc) which form the backbone of the

thesis. It also defines and sets the notation for various physical and statistical quantities

of interest (correlation functions, bias parameter, etc.) in the thesis. Chapter 2 gives an

overview of cosmological N-Body simulations, describing, in general terms, the various

modules that make up a cosmological N-Body code. The chapter also reveiws some of

the important algorithms for cosmolological N-Body simulations. Each of the remaining

chapters of the thesis addresses a separate problem, a chapterwise summary of which

vii



follows.

The TreePM code is a hybrid technique for carrying out large N-Body simulations

to study the formation and evolution of large scale structures in the Universe. It is a

combination of the Barnes and Hut (1986) tree code and a Particle-Mesh (PM) code. In

Chapter 3, we study the performance characteristics of the TreePM code. We also perform

a comprehensive analysis of the error budget for the code. It is shown that the choice of

filter for splitting the inverse square force into short and long range components suggested

in Bagla (2002) is close to optimum - it turns out to be the best among the filters we have

studied. We show that the error in the long range component of the force contributes

very little to the total error in force. Errors introduced by the tree approximation for

the short range force are different from those for the inverse square force and these errors

dominate the total error in force. We calculate the distribution function for error in force

for clustered and unclustered particle distributions. This gives an idea of the error in

realistic situations for different choices of the parameters of the TreePM code. Errors for

99% of particles are found to be below 1.5% for an unclustered distribution and below

0.8% for a clustered distribution for the recommended configuration of the TreePM code.

These numbers compare favourably with other methods such as implementations of the

tree code like GADGET (Springel, Yoshida and White, 2001) and hybrid methods such

as the TPM (Xu, 1995). We also test the code by simulating a few power law models and

checking for scale invariance.

The emergence of Beowulf clusters as an affordable platform for high performance

computing has given an impetus to the development of algorithms that can be parallelised

easily on such platforms. In Chapter 4, we describe a method for parallelising the TreePM

code. The TreePM method has two convenient parallelisms inherent in the sequential

algorithm. In all N-Body codes, including the TreePM code, the force on all particles

can be computed concurrently. Over and above that, the TreePM method splits force

computation into two parts, that of the long range and the short range forces. Therefore,

the long range force can be computed concurrently on a processor not involved in the



computation of the short range force. This makes the TreePM algorithm comparatively

simple to parallelise. We use both functional and domain decompositions for parallelising

the TreePM code. Functional decomposition is used to separate the computation of the

long range and short range forces as well as for the task of coordinating communications

between the different components. Short range force calculation is time-consuming and

benefits from the use of domain decomposition. We test the parallel code on a Linux

cluster. We get a speedup of 31.4 for a 1283 particle simulation on 33 processors; speedup

being better for larger simulations. The time taken for one timestep per particle is found

to be 6.5µs for a 2563 particle simulation on 65 processors. Thus a simulation that runs

for 4000 timesteps takes 5 days on the Linux cluster.

Many problems in gravitational clustering are intractable because of the limited dy-

namic range of N-Body simulations in three dimensions. The problem of dynamic range

can be circumvented by simulating a two-dimensional system as long as one studies generic

features like the scaling relations which are likely to be independent of dimension. We

have extended the TreePM method to simulations in two dimensions. Chapter 5 describes

the 2d TreePM code. In two dimensions, the gravitational force falls as 1/r and not as

1/r2. The splitting of force between the PM and the tree parts is described. Though the

key features of the error analysis for the 3d TreePM code carry over to the 2d code as

well, we also estimate the error in the 2d force for a realistic configuration. Error for 99%

of the particles is found to be below 4% for an unclustered distribution and below 2%

for a clustered distribution. A comparison of the 2d TreePM and Particle-Mesh methods

is also carried out in this chapter of the thesis. The aim is to highlight the efficacy of

the 2d TreePM method for two-dimensional cosmological simulations. We show that a

PM simulation underestimates the clustering at small scales and that haloes are better

resolved in TreePM simulations. The 2d TreePM code offers greater dynamic range and

superior resolution in comparison to a 2d Particle-Mesh code.

Much of the work in this thesis is based on the development of methods for N-Body

simulations as well as analysis of results obtained from N-Body simulations. Also much of



the progress in understanding the physics of the high-redshift Universe and comparisons

with observations would not have been possible without N-Body simulations. Given the

importance of this tool, it is essential to understand its limitations, as ignoring them

can easily lead to interesting, but wrong results. In Chapter 6, we analyse some of

the limitations arising out of the finite size of the simulation volume in any N-Body

simulation. A finite size implies that fluctuations at scales larger than the size of the

simulation volume are ignored and a truncated power spectrum is simulated. We propose

a measure based on mass functions that can be used to test whether the simulation volume

is large enough for us to ignore contribution of scales larger than the dimensions of the

simulation volume. If the simulation volume is large enough, then the number density of

massive objects expected from the full power spectrum and that from the truncated power

spectrum should match. The same scale is also an appropriate choice for the transition

scale when tools like MAP (Tormen and Bertschinger, 1996), that add the contribution

of the missing power, are used.

Scaling relations in gravitational clustering in an expanding background indicate that

there are three prominent regimes in the evolution of gravitational clustering. The highly

non-linear asymptotic regime is poorly understood. Several studies have attempted to un-

derstand the nature of the asymptotic regime, mainly with help of N-Body simulations.

One of the reasons for the inability to resolve the confronting issues in the asymptotic

regime has been the limited dynamic range of N-Body simulations. We can circumvent

the problem of dynamic range by simulating a two-dimensional system. Understanding

the nature of the asymptotic regime in two dimensions can help solve the problem in

three dimensions, even though it may not be possible to map the solution directly to

the full problem in three dimensions. In Chapter 7, we investigate scaling relations for

two-dimensional gravitational collapse using the 2d TreePM code and study the strongly

non-linear regime (ξ̄ ≃ 100) for power law models. We find the evolution of these models

to be scale-invariant in all our simulations. We find that the stable clustering limit is not

reached, but there is a model-independent non-linear scaling relation in the asymptotic

regime. This confirms results from an earlier study (Bagla, Engineer and Padmanabhan,



1998) which only probed the mildly non-linear regime (ξ̄ < 40). The correlation func-

tion in the extremely non-linear regime is found to be a less steep function of scale than

reported in earlier studies. We show that this is due to coherent transverse motions in

massive haloes. We also study density profiles and find that the scatter in the inner and

outer slopes is large and there is no single universal profile that fits all cases. Also the dif-

ference in typical density profiles for different models is found to be smaller than expected

from the stable clustering hypothesis. Transverse motions induced by substructure are a

likely reason for this difference being small.

Current models for the formation of large scale structures in the Universe are based

on the assumption that gravitational amplification of density perturbations results in the

formation of collapsed, virialised objects. These models can be used to make predictions

about the distribution of matter. This is conveniently codified in terms of correlation

functions and the moments of the matter distribution. However, all of these models

deal with the distribution of dark matter, whereas what we see are galaxies. Bias is

the thread that links the two. We define bias in a statistical manner. It is the ratio of

the power spectrum for galaxies and dark matter. Understanding clustering of galaxies

in the non-linear regime is complicated by the issue of bias. It has been hypothesised

that measurements of higher order correlations and moments allow a determination of

bias. However, in the absence of a clean analytical formulation in the non-linear regime,

there is no clear method of making use of higher order moments for this purpose. In

Chapter 8 of the thesis we try to get a handle on the relation of galaxy clustering and the

initial power spectrum of density fluctuations by computing the moments of distribution

of overdense regions in N-Body simulations of power law models using the TreePM code.

In the study, high density regions are identified and isolated. These are assumed to host

galaxies in proportion to mass. We study the effect of redshift space distortions and high

density cutoffs on mass distributions and we find that the skewness for overdense regions

in redshift space does not depend on the initial power spectrum in any significant manner.

This is work in progress.
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Chapter 1

Introduction

Cosmology is the scientific study of properties of the Universe as a whole. The aim of

cosmology is to understand the origin, evolution and ultimate fate of the Universe. The

prevailing theory about the origin and evolution of the Universe is the so-called big bang

model which postulates that the Universe has expanded from a hot dense state into the

vast and much cooler cosmos we currently inhabit. The big bang model of cosmology

rests on two key ideas that date back to the early 20th century : Einstein’s general

theory of relativity and the cosmological principle. The cosmological principle states that

the Universe is homogeneous and isotropic. We assume that the matter in the Universe

is distributed uniformly on large scales and general relativity is used to compute the

evolution of the Universe.

1.1 Cosmology and Observations

Observations reveal that the Universe is homogeneous at very large scales. It has been

shown (Bharadwaj, Mittal and Seshadri, 1999) that the distribution of galaxies in the

Las Campanas Redshift Survey (Shectman et al., 1996) is consistent with the Universe

being homogeneous at large scales and the transition to homogeneity occurs in the range
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of scales 80h−1 Mpc to 100h−1 Mpc 1. That the early Universe was highly homogeneous

and isotropic is also indicated by observations of temperature anisotropies with a very

small amplitude [∆T
T

∼ 10−5] in the cosmic microwave background radiation (Smoot et

al., 1992; Bennett et al., 2003).

The first important discovery in observational cosmology was that we live in an ex-

panding Universe. Hubble discovered (Hubble, 1929) from observations of galaxies that

these are moving away from us with a speed proportional to their distance from us. This

is called the Hubble law and the constant of proportionality is called the Hubble constant

H0. The value of H0 is equal to 72+5
−5 (Km/sec)/Mpc for a 68% confidence range (Freed-

man et al., 2001; Spergel et al., 2003; Bennett et al., 2003). The form of the Hubble

law is also consistent with a homogeneous and isotropic Universe. WMAP and other

observations (Perlmutter et al., 1999; Spergel et al., 2003; Bennett et al., 2003) indicate

that the total energy density in the Universe is close to the critical density (defined later)

and hence the geometry of the Universe is flat. There is considerable evidence that the

energy content of the Universe is dominated by dark matter and dark energy, components

distinct from normal matter (baryons) and radiation.

The dynamical mass of galaxies is found to be about ten times larger than the mass

associated with stars, gas and dust. This excess mass is also inferred from observations

of gravitational lensing (Schneider, Ehlers and Falco, 1992; Chitre et al., 2001; Van Waer-

beke et al., 2000), the phenomenon of bending of light predicted by the general theory

of relativity. The material that exerts a gravitational pull, but does not emit nor absorb

light is called dark matter (Trimble, 1987). The exact nature of dark matter is unknown,

but there are a number of plausible candidates. Dark matter could be brown dwarfs or

supermassive black holes; it could also be made of weakly interacting particles. Cosmol-

ogists call these hypothetical particles WIMPs (Weakly Interacting Massive Particles).

There are strong limits on the interaction cross-sections of WIMPs from astrophysical

considerations (Kochanek and White, 2000; Hennawi and Ostriker, 2002). Observational

11 Mpc is 1 Megaparsec and is equal to 3.0856× 1022 metres
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evidence indicates that dark matter is non-relativistic (Spergel et al., 2003; Tegmark et

al., 2003). Non-relativistic, non-interacting (collisionless) dark matter is called cold dark

matter. Observations indicate that about a quarter of the matter content of the Universe

is cold dark matter.

Measurements based on the luminosity distance to distant Type Ia supernovae (Perl-

mutter et al., 1999) suggest that the expansion of the Universe is accelerating which, in

turn, implies the existence of a form of matter with a strong negative pressure. This form

of matter is called dark energy. A prime candidate for this is the cosmological constant

(Λ). Dark energy constitutes about two-thirds of the energy content of the Universe and

it plays a significant role in the evolution of the Universe.

Though the Universe is homogeneous and isotropic at the largest scales probed, ob-

servations reveal a wealth of detail on smaller scales. There are clear departures from

homogeneity from the scale of single galaxies to that of structures larger than 100 Mpc.

Fig.1.1 shows the distribution of galaxies observed by the 2dF Galaxy Redshift Survey

(http://www.mso.anu.edu.au/2dFGRS). The observed field is covered by a complex net-

work of structures such as filaments, voids, clusters and superclusters (Peacock et al.,

2001).

Large scale structures like galaxies and clusters of galaxies are believed to have formed

by the amplification of small perturbations due to gravitational instability (Doroshkevich

and Zeldovich, 1964; Dicke et al., 1965; Zeldovich and Podurets, 1966; Doroshkevich, Zel-

dovich and Novikov, 1967; Zeldovich and Novikov, 1967; Peebles, 1980; Peacock, 1998;

Padmanabhan, 2002a; Bernardeau et al., 2002). Fluctuations detected in the cosmic mi-

crowave background temperature are signatures of such primordial density perturbations

in the early Universe.
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Figure 1.1: This figure shows the distribution of galaxies observed by the 2dF Galaxy Redshift Survey
(http://www.mso.anu.edu.au/2dFGRS).

1.2 The Background Universe

In this section, we will briefly review the relativistic formalism for a homogeneous and

isotropic background Universe in the standard big bang model of cosmology (Peebles,

1993; Padmanabhan, 1993; Narlikar, 1993; Peacock, 1998). For a homogeneous and

isotropic Universe, many of the features of the metric can be deduced from symmetry

alone (Robertson, 1935; Walker, 1936). The Robertson-Walker metric describes a homo-

geneous and isotropic space evolving by a simple scaling of coordinates with fundamental

observers maintaining fixed positions in comoving coordinates x. The metric has the form

ds2 = c2dt2 − a2(t)

[

dx2

1 − kx2
+ x2(sin2 θdφ2 + dθ2)

]

(1.1)

where a(t) is the scale factor and k is the curvature constant. It can be shown that k

takes values +1, 0, or −1 and the Universe is called closed, flat or open respectively. k

can be restricted to these values only if the present value of a is not assumed to be unity

for the open and closed models. t is the cosmic time.

We can relate comoving co-ordinates x to the observationally measured coordinates



1.2. THE BACKGROUND UNIVERSE 5

r, also called the proper coordinates : r(t) = a(t)x. Then,

ṙ(t) =

[

ȧ(t)

a(t)

]

a(t)x =

[

ȧ(t)

a(t)

]

r(t) = H(t)r(t) (1.2)

implying that H(t) is the Hubble parameter. Its present value H0 =
(

ȧ
a

)

t=t0
is the Hubble

constant. For an increasing a(t) we get an expanding Universe.

Einstein’s field equations are :

Rµν −
1

2
gµνR− Λgµν = −8πGTµν (1.3)

where Rµν , gµν and R are respectively the Ricci tensor, the metric tensor and the curvature

scalar. Tµν is the energy-momentum tensor, Λ the cosmological constant and G the

gravitational constant. Under the assumptions of homogeneity and isotropy, the tensor

Tµν has the following form for perfect fluids :

Tµν = dia[ρ̄(t),−p(t),−p(t),−p(t)] (1.4)

Here p is the pressure. On computing the Ricci tensor and the curvature scalar from the

Robertson-Walker metric, eqn.1.3 reduces to two independent equations (c = 1) :

ȧ2 + k

a2
=

8πG

3
ρ̄+

Λ

3
(1.5)

2
ä

a
+
ȧ2 + k

a2
= −8πGp + Λ (1.6)

These two equations, combined with an equation of state p = p(ρ̄), completely determine

the three functions a(t), p(t) and ρ̄(t). The initial conditions can be specified in terms

of the densities contributed by the various forms of energy and matter in the Universe

at the present time. The densities at t = t0 are conveniently expressed in dimensionless

form by

Ωi =
ρ̄i(t0)

ρc
(1.7)

where the density contributed by the ith component of matter or energy is scaled by the

critical density ρc :

ρc =
H0

2

8πG
(1.8)
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From eqn.1.5, we can see that

ρ̄a3 =
(

3a

8πG

)

(

ȧ2 + k − Λa2

3

)

(1.9)

Differentiating this expresssion and using equation 1.6, we obtain the following :

d

da
(ρ̄a3) = −3a2p (1.10)

This equation is the same as T ij;j = 0, the conservation equation. Given an equation of

state p = p(ρ̄), we can integrate eqn.1.10 to obtain ρ̄ = ρ̄(a). For an equation of state of

the form p = wρ̄, density varies as

ρ̄ ∝ a−3(1+w) (1.11)

Radiation and relativistic matter (Ωr) have an equation of state p = 1
3
ρ̄, non-relativistic

matter (Ωnr) an equation of state p ∼= 0 and the cosmological constant p = −ρ̄. Using

eqn.1.11, we have ρ̄nr ∝ a−3, ρ̄rad ∝ a−4 and ρ̄Λ = constant, independent of a. Sub-

stituting any of these relations into eqn.1.5, we can determine a(t). The energy density

contributed by radiation and relativistic matter in our Universe is negligible at present,

though these were the dominant components in the early Universe. It can be shown that

the evolution of a Universe dominated by non-relativistic matter, Λ and k is governed by

the following equation (Ωr ≃ 0) :

ȧ2 + k

a2
= H0

2

[

Ωnr

(

a0

a

)3

+ ΩΛ

]

(1.12)

where ΩΛ = Λ/3H0
2 and we have neglected all relativistic matter as well as radiation.

Observations are consistent with a flat Universe (k = 0) with Ωtot = 1.02 ± 0.02 (Spergel

et al., 2003).

1.2.1 The Einstein deSitter Model

Let us consider a flat (k = 0) Universe containing only non-relativistic matter (Ωnr = 1);

this is the Einstein deSitter Universe. Using p = 0 in eqn.1.10, we have

d

da
(ρ̄a3) = 0 ⇒ ρ̄(t) = ρ̄(t0)

[

a(t0)

a(t)

]3

(1.13)
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Substituting the above expression for ρ̄ in eqn.1.5, we get

ȧ2

a2
=

8πG

3
ρ̄(t0)

[

a(t0)

a(t)

]3

(1.14)

Solving this with the initial condition a(0) = 0, we find

a(t) = [6πGρ̄(t0)]
1/3a(t0)t

2/3 (1.15)

Assuming a(t0) = 1, we get

6πGρ̄(t0) = t−2
0 ⇒ a(t) =

(

t

t0

)2/3

(1.16)

The Einstein deSitter Universe expands forever with a decelerating rate of expansion and

the density decreases as

ρ̄(t) =
1

6πGt2
(1.17)

1.2.2 The Newtonian Limit

In principle, the process of structure formation should be studied in a fully covariant

manner within the general theory of relativity. But it is more convenient to work in

the Newtonian limit. In the Newtonian limit, we can reduce an arbitrary metric to the

following form (Landau and Lifshitz, 1975) :

ds2 =
(

c2 + 2Φav

)

dt2 − dr2 (1.18)

with Φav/c
2 ≪ 1. Here Φav is the effective Newtonian gravitational potential. The

space-space components of the metric of the same order as Φav can be dropped if particle

velocities are non-relativistic, i.e. v/c≪ 1.

Consider the following coordinate transformations for the Robertson-Walker metric :

r = a(t)x

t̄ = t− t0 +
1

2

H(t)a2(t)

c2
x2 +O(x4) = t− t0 +

H−1

2

a2x2

dH
2 +O(x4) (1.19)

The expansion of the Universe sets a natural scale dH = c(ȧ/a)−1 = c/H . This scale, called

the Hubble radius, is the length scale over which physical processes can act coherently
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(Peebles, 1980; Padmanabhan, 1993). In the above transformation, spatial coordinates

have been changed from the comoving to the proper frame and time has been corrected

for gravitational redshift. The coordinate transformations lead to the metric

ds2 =

[

1 − ä

a

r2

c2

]

c2dt̄2 −
[

1 +
(

ȧ

a

)2 r2

c2
+
k

a2
r2

]

dr2 − r2
[

dθ2 + sin2 θdφ2
]

(1.20)

We have ignored terms of cubic and higher order in rȧ/ac = r/dH because we are inter-

ested in scales that are small in comparison with the Hubble radius. The coefficient of

dr2 in eqn.1.20 can be set equal to unity if r ≪ dH , r ≪ dk and v ≪ c. Here dk = a/
√
k

is the curvature scale. The line element then reduces to

ds2 =

[

1 − ä

a

r2

c2

]

c2dt̄2 − dr2 − r2
[

dθ2 + sin2 θdφ2
]

(1.21)

Comparing with eqn.1.18, we can identify the effective Newtonian potential due to the

homogeneous and isotropic background Universe as

Φav =
1

2

ä

a
r2 =

2

3
πG (ρ̄+ 3p) (1.22)

For a Universe with non-relativistic matter and a cosmological constant, the effective

potential becomes

Φav =
(

2

3
πGρ̄nr(t) −

1

6
Λ
)

=
1

4
H0

2Ωnr
a0

3

a3
− 1

2
H0

2ΩΛ (1.23)

Here ρ̄nr(t) = ρ̄dm(t) + ρ̄b(t) is the total density of non-relativistic matter at time t. This

has contributions from ordinary baryonic matter ρ̄b as well as cold dark matter ρ̄dm.

For length scales l ≪ dH , Newtonian gravity provides an accurate description, i.e., in

any region small compared to dH , one can set up a coordinate system in which the proper

coordinates of a particle r(t) = a(t)x(t) satisfy the Newtonian equations with Φav as the

Newtonian potential. Since non-linear effects due to gravitational clustering also occur at

scales l ≪ dH , this framework is adequate for our purpose. For us to use the Newtonian

limit for studying structure formation, formally we require the following :

• The scale of homogeneity should be much smaller than the Hubble radius. The scale

of homogeneity is close to 100h−1 Mpc (Bharadwaj, Mittal and Seshadri, 1999). This

is definitely much smaller than the Hubble radius (∼ 3000h−1 Mpc).
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• At all scales of interest, the gravitational potential should satisfy Φav/c
2 ≪ 1.

Let us consider a homogeneous mass distribution, where the gravitational potential

energy for mass M contained within a sphere of proper radius R is Φav ∼ GM/R ∼
Gρ̄nrR

2 ∼ (HR)2. At R ∼ 100h−1 Mpc at the present epoch, we get Φav/c
2 ∼ 10−3.

Even highly overdense regions like clusters of galaxies have Φ/c2 ∼ 10−5.

• Particle motions should be non-relativistic. Galaxies and cores of clusters of galaxies

are believed to be in virial equilibrium. Therefore, within an order of magnitude,

the average velocity of objects, for example, in the core of a cluster of galaxies is

given by v ∼
√

Φ, which gives v/c ∼ 10−2.5 for the core of a cluster of galaxies.

Given that all the necessary conditions are satisfied, we can safely apply the Newtonian

limit in the study of dynamics of clustering of matter.

1.3 Linear Theory of Perturbations

Gravity dominates over all other forces of nature at sufficiently large scales. As most of

the matter in the Universe is dark and dark matter responds only to gravity, the role

played by gravitational forces becomes doubly important. The complications due to gas

physics can be mostly ignored at scales of interest (l > 1h−1Mpc) and we can assume that

the evolution of density perturbations at large scales is governed by gravitational forces

due to dark matter.

Gravitational instability leads to the growth of density perturbations. Overdense

regions accrete matter at the expense of underdense regions and in the process inhomo-

geneities in the density field grow. When the amplitude of density fluctuations is small

compared to the average density, it is possible to study the growth of fluctuations ana-

lytically using linear perturbation theory (Peebles, 1974a, 1980). Galaxies and clusters of

galaxies are however clearly non-linear objects and we need to go beyond linear theory

in order to study the process of structure formation. Nevertheless, the linear theory of
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density perturbations is important and in this section we present a brief review of the

formalism.

Motions of non-relativistic matter can be studied in the fluid limit and we can treat

non-relativistic matter as an ideal pressureless fluid. This requires that the velocity dis-

persion be much less than the bulk velocity at the scales of interest. The velocity V and

the total density ρ, considered as functions of the proper coordinates r and time t, satisfy

the continuity equation :
(

∂ρ

∂t

)

r

+ ∇r · (ρV) = 0 (1.24)

Since we ignore pressure, Euler’s equation of motion is

(

∂V

∂t

)

r

+ (V · ∇r)V = −∇rΦ (1.25)

and Poisson’s equation is

∇r
2Φ = 4πGρ (1.26)

Φ is the total potential corresponding to ρ. The subscript in ∇ indicates that the in-

dependent variables are t and r. In terms of comoving coordinates, the velocity can be

written as

ṙ = V = ȧx + u(x, t) = Hr + u(x, t) (1.27)

Here H r = ȧ x is the Hubble flow and the peculiar velocity is u(x,t) = aẋ. We write

density as

ρ(x, t) = ρ̄[1 + δ(x, t)] (1.28)

where δ(x, t) is the density contrast. It is the fractional departure of the local density

from the average background density and is a function of both time t and position x. The

continuity equation in comoving coordinates is

(

∂

∂t
− ȧ

a
x · ∇

)

ρ̄(t)[1 + δ] +
ρ̄

a
∇ · [(1 + δ)(ȧx + u)] = 0 (1.29)

Recalling that ˙̄ρ = −3ρ̄ȧ/a, we get

∂δ

∂t
+

1

a
∇ · [(1 + δ)u] = 0 (1.30)
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In this equation and in the discussion below the spatial derivatives are with respect to

the comoving coordinates x. Poisson’s eqn.1.26 is

1

a2
∇2Φ = 4πGρ̄(1 + δ) − Λ (1.31)

We can separate the contribution of the background by writing

Φ = φ(x, t) + Φav = φ(x, t) +
2

3
πGρ̄a2x2 − 1

6
Λa2x2 (1.32)

This gives us

∇2φ = 4πGρ̄a2δ (1.33)

Euler’s equation can be written as

(

∂

∂t
− ȧ

a
x · ∇

)

(ȧx + u) +
1

a
(ȧx + u) · ∇(ȧx + u)

= −1

a
∇φ− 4

3
πGρ̄ax +

1

3
Λax (1.34)

⇒ du

dt
+
ȧ

a
u =

∂u

∂t
+
ȧ

a
u +

1

a
(u · ∇)u = −1

a
∇φ (1.35)

The term uȧ/a indicates that the expansion of the Universe makes the peculiar velocity

decay as u ∝ 1/a(t). Eqns.1.30, 1.33 and 1.35 describe the evolution of density fluctua-

tions in an expanding Universe.

If the perturbations are small (|δ| ≪ 1), then quadratic terms in perturbed quantities

(like uδ or u2) can be dropped. In this limit, eqns.1.30 and 1.35 are

∂δ

∂t
+

1

a
∇ · u = 0

∂u

∂t
+

ȧ

a
u +

1

a
∇φ = 0 (1.36)

Combining these with the Poisson eqn.1.33, we get

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρ̄δ =

3

2

δ

a3
H0

2Ωnr (1.37)

The last equality follows from the definition of the Hubble constant and eqn.1.8. This

equation describes the evolution of the density contrast δ in linear perturbation theory. It

can be shown that, for a Universe with no relativistic component, the Hubble parameter
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itself is a solution of the linear equation (Heath, 1977). That however is the decaying solu-

tion for density perturbations. We can obtain the second solution by using the Wronskian

(Heath, 1977).

X = 1 + Ωnr

(

1

a
− 1

)

+ ΩΛ

(

a2 − 1
)

b(t) ∝ X1/2

a

∫ a da

X3/2
(1.38)

Here b(t) is the growing mode of density perturbations. In the Einstein deSitter model,

the scale factor varies as a ∝ t2/3 (eqn.1.15) and eqn.1.37 becomes

∂2δ

∂t2
+

4

3t

∂δ

∂t
=

2

3t2
δ (1.39)

with the solution

δ = At2/3 +Bt−1 (1.40)

where A and B are constants. The general solution to eqn.1.37 is of the form δ =

A(x)b(t) + B(x)c(t), where b and c are linearly independent and represent the growing

and the decaying solutions respectively. We can safely assume that the growing mode

dominates at late times. We can then ignore the decaying solution and write δ = A(x)b(t).

The velocity field in linear perturbation theory can be obtained as follows. The

continuity equation (the second of eqns.1.36), using the growing solution above, takes the

form

∇ · u = −a∂δ
∂t

= −aδ ḃ
b

(1.41)

We can express the velocity field as the sum of a part with no divergence and an irrota-

tional part. The divergence-free part does not contribute to the evolution of the density

contrast and decays as a(t)−1 (Peebles, 1980). The solution for the irrotational part is

u(x) = a
fH

4π

∫ y − x

|y − x|3
δ(y)d3y (1.42)

where

f =
a

ȧ

ḃ

b
=

1

H

ḃ

b
=
d log b

d log a
(1.43)
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Comparing eqn.1.41 with the equation for the acceleration g = −∇φ/a, we see that the

peculiar velocity can be written as

u =
fH

4πGρ̄
g =

2

3

f

ΩnrH
g (1.44)

In the Einstein deSitter model, where Ωnr = 1 = f and H = 2/(3t), the peculiar velocity

has the simple form u = gt.

For ΩΛ = 0 and at redshift z = 0, f can be expressed in terms of the Hypergeometric

function (Lahav et al., 1991) :

f = −Ωnr/2 − 1 +
5

2
Ωnr

3/2/F
(

3

2
,
5

2
;
7

2
, 1 − Ω−1

nr

)

(1.45)

Useful approximations are f ∼ Ω0.6
nr (Peebles, 1980) and f ∼ Ω4/7

nr (Lightman and Schechter,

1990).

1.4 The Equation of Motion

In the last section we have derived the evolution equations of the density and velocity

fields in the fluid limit. We now switch to a particle representation and replace the

density and velocity fields by a discrete distribution of particles with individual positions

and velocities. There is no velocity dispersion at early times. The distribution of particles

evolves due to gravitational interaction and it can be used to compute the density field.

The dynamical evolution of a system of self-gravitating particles is described by the

following equations :

r̈i = − ∇ri
Φ

∇2
rΦ = ∇2

r[Φav + φ] = 4πGρ− Λ = (4πGρ̄− Λ) + 4πGρ̄δ

ρ(r) =
∑

i

miδ
3
D(r − ri) (1.46)

Here ri is the position vector of the ith particle in proper coordinates and mi is the

mass of the ith particle. ρ is the density field for the given set of particles, δ the cor-

responding density contrast field. Φ is the total gravitational potential field, being the
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sum of contributions from the background Universe Φav and perturbations φ. δD is the

Dirac Delta function. We will drop the subscript i from particle positions for convenience.

Transforming eqns.1.46 to comoving coordinates x = r/a(t) and using eqn.1.32, we obtain

ẍ + 2
ȧ

a
ẋ = − 1

a2
∇xφ

∇x
2φ = 4πGa2ρ̄δ =

3

2
H0

2Ωnr
δ

a
(1.47)

The last equality in the second equation follows from the definition of the Hubble constant

and eqn.1.8. The equation of motion (eqns.1.47) can be cast in a useful form by using the

growing mode b(t) as “time” :

dv

db
= −Q

b
(v − g)

∇2ψ =
δ

b
(1.48)

with

g = −∇ψ = − 2

3H0
2Ωnr

(

a

b

)

∇φ

Q =

(

ρ̄

ρc

)(

ȧb

aḃ

)2

=

(

ρ̄

ρc

)(

d log a

d log b

)2

=

(

ρ̄

ρc

)

1

f 2
(1.49)

Here v = dx/db is the generalised peculiar velocity defined with the parameter b as the

time, ψ is the generalised gravitational potential and all the other symbols carry their

usual meaning. We have dropped the subscript x from spatial derivatives for convenience.

This form of the equation of motion is particularly useful as the acceleration dv/db = 0

in the linear regime. This allows us to relate the velocity v to the gravitational force g

in a simple mannner. For the Einstein deSitter model, b(t) = a(t) and Q = 1. Therefore,

the equation of motion reduces to

dv

da
= − 3

2a
(v − g) (1.50)

1.5 Statistical Analysis of Clustering

Models of structure formation do not explain the exact structures we see in our Universe;

at best, theorists can hope to construct models of the Universe that are statistically
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equivalent. In this section, we give a brief summary of the various statistical indicators

that are used for comparing models with observations.

1.5.1 Correlation Functions and Power Spectra

Spatial properties of a statistically homogeneous set of points (be it galaxies or simulation

particles) are fully characterized by n-point correlation functions (de Vaucouleurs, 1971;

Peebles, 1971, 1980). The first of these is the two-point correlation function. This is

defined as follows :

ξ(r) = 〈δ(x)δ(x + r)〉 (1.51)

The angular brackets indicate an averaging extending over all space. ξ(r) is therefore the

auto-correlation function of the density contrast field.

ξ(r) =
1

V

∫

d3xδ(x)δ(x + r) (1.52)

If we express δ in terms of its Fourier transform and note that δ(x) is real, so that

δ(−k) = δ∗(k), we obtain

ξ(r) =
1

V

∫

d3x
∫

d3k

(2π)3
δk exp[−ιk · x]

∫

d3k1

(2π)3
δk1

exp[−ιk1 · (x + r)]

=
∫

d3k

(2π)3
δk

∫

d3k1

(2π)3
δk1

exp[−ιk1 · r]
[

1

V

∫

d3x exp[−ι(k + k1) · x]
]

=
∫

d3k

(2π)3
δk

∫

d3k1

(2π)3
δk1

exp[−ιk1 · r]δD(k + k1)

=
∫ d3k

(2π)3
|δk|2 exp[−ιk · r]

=
∫

d3k

(2π)3
P (k) exp[−ιk · r] (1.53)

The two-point correlation function is therefore the Fourier transform of the power spec-

trum P (k).

In an isotropic Universe, the density perturbation spectrum cannot contain a preferred

direction and therefore we must have an isotropic power spectrum such that |δk|2 depends

only on the magnitude of k and not on its direction. The same argument is valid for the
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correlation function and hence ξ(r) = ξ(r). The angular part of the k-space integral

(eqn.1.53) can then be performed. In three dimensions, this yields

ξ(r) =
1

(2π)3

∫

P (k)
sin kr

kr
4πk2dk =

∫ k3P (k)

2π2

sin kr

kr

dk

k
(1.54)

The 2d analogue of this formula is

ξ(r) =
1

(2π)2

∫

P (k)J0(kr)2πkdk (1.55)

The power spectrum is a measure of density fluctuations at scale k. We usually

express the power spectrum in dimensionless form in terms of the quantity ∆2(k) which

is defined as

∆2(k) =
k3P (k)

2π2
(1.56)

∆2(k) is the power spectrum of density fluctuations, but in logarithmic intervals in k.

Thus ∆2(k) = 1 means that density fluctuations have a typical amplitude equal to unity

for modes in a logarithmic bin around wavenumber k. ∆2(k) is therefore the Fourier-space

counterpart to the dimensionless quantity ξ(r).

If the density field is a Gaussian random field, it is completely described by the power

spectrum and all the moments of the distribution can be expressed in terms of integrals

over the power spectrum. In most cosmological models the initial density field is chosen

to be a Gaussian random field.

An alternative definition of the two-point correlation function is in terms of the excess

number of neighbours at a given distance from a randomly chosen point/particle. We can

define a hierarchy of three-point, four-point and n-point correlation functions in terms

of the excess number of triplets, quadruplets, etc. Thus, if a point is chosen from a

distribution, the average number of neighbours at a distance r in an infinitesimal volume

element δV is

δN2 = n̄δV [1 + ξ(r)] (1.57)

Here n is the mean number density in the distribution. Similarly, the three-point correla-

tion function can be defined in terms of the number of pairs to complete a triangle with
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a randomly chosen point :

δN3 = n̄2δV2δV3[1 + ξ(r12) + ξ(r23) + ξ(r31) + ζ(r12, r23, r31)] (1.58)

Here rij = |ri − rj |; i, j = 1, 3 form the three sides of the triangle.

The usual method to compute ξ is based on counting pairs of points as a function

of pair separation. Higher-order correlations are often estimated and characterized by

their volume averages, the irreducible moments (cumulants) of counts in cells µN (de

Vaucouleurs, 1971; Peebles, 1971, 1980). The volume averaged correlation function ξ̄(r)

may be interpreted in terms of the excess number of neighbours with separation less than

r and is given by

ξ̄(r) =
3

r3

∫ r

0
y2ξ(y)dy = 3

∫ ∞

0

dk

k
∆2(k)

(

sin(kr) − kr cos(kr)

k3r3

)

(1.59)

1.5.2 Smoothed Fields

A useful tool in the study of density fields is filtering, where the density field is smoothed

over some length scale. This allows us to focus on averaged quantities and many observa-

tional results are expressed in this form. Some common three-dimensional filter functions

are as follows :

Gaussian : F =
1

2π3/2RG
3 e

−r2/2RG
2 ⇒ Fk = e−k

2RG
2/2

Spherical Tophat : F =
3

4πRT
3 ; r ≤ RT ⇒ Fk =

3

y3
(sin y − y cos y) ; y ≡ kRT

Fk here is the Fourier transform of the filter function. F is taken to be equal to zero

beyond r = RT for the spherical tophat filter function.

We are often interested in the variance of the mass distribution at a given scale. This

is given by

σR
2 =

1

2π3

∫

P (k) |Fk(R)|2 d3k (1.60)

An important measure is σ8 which is the r.m.s. amplitude of mass fluctuations when

smoothed with a spherical tophat filter of radius 8h−1 Mpc. It is an absolute measure of
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fluctuations at the given scale and, unlike the correlation function, it is a positive definite

quantity.

1.5.3 Moments of Counts in Cells

Given a distribution of points, the volume averaged n-point correlation functions can be

computed easily using the counts-in-cells method. In this method, we randomly distribute

a large number of cells in the volume containing an arbitrary distribution of points. We

compute the distribution of counts of points in cells and we can relate the moments of

the distribution to the volume averaged n-point correlation functions as shown here. We

reproduce some of the general results (Peebles, 1980) for the case where the points are

counted in a randomly placed cell.

A convenient way to compute the moments of the count N of points in a cell with

volume V is to imagine that the cell is divided into infinitesimal elements with n1 points

in the element δV1. The probability that n1 = 1 is n̄δV1 and the probability that n1 > 1

is an infinitesimal of higher order.

n̄δV1 = 〈n1〉 = 〈n1
3〉 = 〈n1

2〉 = .... (1.61)

to order δV because n1
m = n1 if n1 = 0, 1. The product n1n2 for the counts in the disjoint

elements δV1, δV2 is equal to unity if there are points in both elements and the probability

for this is given by

δP = n̄2δV1δV2[1 + ξ(r12)] (1.62)

where points in elements δV1 and δV2 are separated by distance r12. Therefore, it follows

that

〈n1n2〉 = n̄2δV1δV2(1 + ξ12)

〈(n1 − 〈n1〉)〉 〈(n2 − 〈n2〉)〉 = n̄2δV1δV2ξ12 (1.63)

The count in the cell is

N =
∑

n1 (1.64)
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By eqn.1.61, the average is

〈N〉 =
∑

〈n1〉 =
∫

V
n̄dV = n̄V (1.65)

The second moment is
〈

N2
〉

=
∑

〈n1
2〉 +

∑

〈n1n2〉 (1.66)

The squared terms are given by eqn.1.61, the cross terms by eqn.1.63 :

〈

N2
〉

= n̄V + (n̄V )2 + I2

µ2 =
〈

(N − n̄V )2
〉

= n̄V + I2 (1.67)

with

I2 = n̄2
∫

V
dV1dV2ξ12 (1.68)

If ξ = 0, this reduces to µ2 = n̄V as for a Poisson distribution. If the points are correlated

(ξ > 0), the dispersion in N is increased. We can perform a change of variables from r1

and r2 to r = |r1 − r2| and r1 and integrate out r1 in I2. Eqn.1.67 for the second moment

then reduces to

µ2 = n̄V + n̄2V
∫

d3rξ(r) = n̄V + n̄2V 2ξ̄(r) = 〈N〉 + 〈N〉2 ξ̄(r) (1.69)

Similarly, the third moment is expressible as

µ3 = 3µ2 − 2n̄V + I3 (1.70)

with

I3 = n̄3V 3ζ̄(r) (1.71)

For ready reference, the equations relating the moments of counts of points to the

two, three and four-point correlation functions are as follows :

〈N〉2 ξ̄(r) = µ2 − 〈N〉

〈N〉3 ζ̄(r) = µ3 − 3µ2 + 2 〈N〉

〈N〉4 η̄(r) = µ4 − 6µ3 − 3µ2
2 + 11µ2 − 6 〈N〉 (1.72)

where η is the four-point correlation function.
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1.5.4 The Reduced Moments

The reduced moments are defined as :

SQ(r) =
ξ̄Q(r)

ξ̄2(r)
Q−1 (1.73)

where Q = 3, 4, 5, etc. and ξ̄2 = ξ̄, ξ̄3 = ζ̄, ξ̄4 = η̄, etc. Most cosmological models

presume an initial Gaussian random density field. Non-linear evolution however leads to

a non-Gaussian distribution at small scales. The lowest-order non-Gaussian signatures are

probability distributions for density that display asymmetry (skewness) or a non-Gaussian

degree of peakiness (kurtosis). These deviations are respectively measured through the

reduced moments S3 and S4. From second order perturbation theory (Peebles, 1980;

Colombi, Bouchet and Hernquist, 1996), it can be shown that SQ should not depend on

scale in the weakly non-linear regime (|δ| ≪ 1). The expected results (in the weakly

non-linear regime) are (Juszkiewicz, Bouchet and Colombi, 1993; Bernardeau, 1994)

S3 =
34

7
− (n+ 3)

S4 =
60712

1323
− 62

3
(n+ 3) +

7

3
(n+ 3)3 (1.74)

Here n is the index of the initial density power spectrum.

In the strongly non-linear regime, no general analytical solutions to the BBGKY

hierarchy have been found. However, if we can assume local statistical equilibrium at

small-enough scales, corresponding to virialised objects, then SQ is expected to be in-

dependent of scale (Davis and Peebles, 1977; Colombi, Bouchet and Hernquist, 1996).

Simulations are consistent with a phenomenological fit for S3 (Fry, Melott and Shandarin,

1993; Colombi, Bouchet and Hernquist, 1996) given by

S3 =
9

n+ 3
(1.75)
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Methods of Computing the Reduced Moments

There are two ways of computing the n-point correlation functions for a distribution of

objects like galaxies or points obtained from, say a N-Body simulation. One is a direct but

brute-force method in which we draw spheres of radius R with arbitrary centres within

the simulation volume. Then we determine the probablility distribution PN(R) of counts

N of points within spheres, compute moments of counts N using

µQ(R) =
〈

(N − N̄)Q
〉

=
∞
∑

0

(N − N̄)QPN(R), (1.76)

and finally compute ξ̄2(R), ξ̄3(R), etc. using eqns.1.72. This method gives accurate results

at all scales, but is computationally expensive, i.e. requires a large amount of CPU time

because the computing time t ∝ NpNsph [R/Lbox]
3, where Nsph is the no. of spheres of

radius R drawn and Lbox
3 is the volume of the simulation box containing Np particles.

This becomes more and more expensive as we get to larger R.

The second method takes advantage of the speed of fast Fourier transforms (FFT).

In this, we first create an equispaced grid in the simulation volume. Next, starting from

the distribution of points, we define a number density n(xi) on the grid using an ap-

propriate interpolating function (compute time t ∝ Np), Fourier transform the number

density (compute time t ∝ Np logNp) and convolve the number density with a spherical

tophat filter function of radius R (compute time t ∝ Np). The inverse Fourier trans-

form of Ñ(k) = ñ(k)F̃R(k) i.e. N(xi) gives us the number of points (or counts) within

a sphere of radius R at grid point xi (compute time t ∝ Np logNp). We can determine

the probablility distribution PN(R) of counts N and as before compute the quantities of

interest in subsequent steps. Though this method is faster [overall O(Np logNp), where

Np is the total number of points as before], results are expected to be inaccurate at scales

comparable with the grid scale. This is illustrated in fig.1.2 where we have plotted the

second and the third moments of particle distribution S2 (upper panel) and S3 (lower

panel) respectively for a power law simulation with n = −0.5 using the TreePM code.

S2 and S3 are plotted as functions of scale r. In both panels, the solid lines show the

statistics computed using the direct method, while the dashed lines show the same for
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the method using FFT. The scale r is in units of the spacing in the grid constructed for

the FFT method. The two methods give identical answers at scales large compared to

the grid spacing, but at scales comparable to the grid spacing, the FFT method leads to

large inaccuracies in the computed S2 and S3. The convergence scale for the two methods

is higher for S3 compared to S2.

1.5.5 Redshift Space Statistics

In a Universe that obeys the cosmological principle, the clustering of galaxies is statisti-

cally isotropic. But in galaxy surveys, the distance to a galaxy is inferred from the redshift

z, making the line of sight (ẑ) a special direction. Peculiar velocities of galaxies produce

an anisotropy in redshift-space clustering on all scales (Kaiser, 1987). On small scales, the

random motions of galaxies in virialised systems stretch groups and clusters into so-called

“fingers-of-god”. On large scales, coherent flows created by gravity compress overdense

regions along the line of sight and stretch underdense regions correspondingly. The red-

shift distance of a galaxy differs from its true distance by its peculiar velocity ug ≡ ẑ · ug
along the line of sight ẑ. The effect of peculiar velocities on galaxy distributions has been

extensively studied with simulations (Matsubara, 1994). This is also used to determine

cosmological parameters with the help of observations, e.g. as in the 2dF Galaxy Redshift

Survey (Verde et al., 2002). The statistics of interest in redshift space are the redshift

space correlation function ξ(s) as well as higher order correlation functions. Formally,

the redshift space correlation function ξs(π, σ) is the mean fractional excess of galaxy

neighbours of a galaxy at separations π and σ parallel and perpendicular to the line of

sight respectively. The statistic is a function only of the components π and σ of the pair

separation if the angle between the positions of any two galaxy pairs is small enough such

that the line-of-sight redshift distortions are effectively plane-parallel.
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Figure 1.2: This figure shows the second moment S2 (upper panel) and the third moment S3 (lower
panel) as a function of scale r for a power law simulation with n = −0.5 using the TreePM code. In both
panels, the solid lines show the statistics computed using the direct method described in the text, while
the dashed lines show the same for the method using FFT. The horizontal axis r is in units of the grid
spacing. The values of S2 and S3 obtained using FFT are inaccurate at small scales, but match their
direct determination at larger scales.
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1.5.6 The Radial Pair Velocity

The last statistical indicator of interest to us is the dimensionless radial pair velocity h.

It is defined as

h(r, a) = −vp(r, a) · r/Hr2 (1.77)

where vp(r, a) denotes the mean relative velocity of pairs of objects at separation r at

epoch a. h is a ratio of the radial component of the mean relative velocity vp of pairs

and the velocity of the Hubble expansion, both evaluated at the same scale r. This makes

h a dimensionless quantity. In the linear limit, i.e. when ξ̄ ≪ 1, h = (2/3) ξ̄ (Peebles,

1980; Hamilton et al., 1991; Nityananda and Padmanabhan, 1994). In two dimensions,

the corresponding relation is h = ξ̄. In the extreme non-linear limit, if we can ignore the

effect of mergers, virialised systems should maintain their sizes in proper coordinates (the

stable clustering limit) and peculiar motion can be assumed to compensate for the Hubble

expansion to form bound structures. In that case h = 1 (Peebles, 1980).

1.6 Light and Mass and Bias

Observations suggest that baryonic matter makes up only a small portion of the Universe

- about 5% (Ωb), while cold dark matter (Ωdm) and dark energy (ΩΛ) contribute about

25% and 70% respectively. In other words, almost 90% of the matter in the Universe

which can give rise to structures is dark. Observations show that the dynamics of large

structures like galaxies, clusters of galaxies, etc. is dominated by dark matter. Dark

matter behaves like non-relativistic dust at large scales.

Cosmologists believe that galaxies and clusters of galaxies formed by accretion of

matter on to small inhomogeneities present in the early Universe. In the standard scenario

of structure formation, dark matter aggregates into clumps, the virialised parts of which

are usually called haloes. Galaxies then form by the cooling and condensation of baryonic

matter (gas) within these haloes (Hoyle, 1953; Rees and Ostriker, 1977; Silk, 1977; White
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and Rees, 1978) subject to the condition that the baryonic gas cloud has a mass greater

than the Jeans mass. Pressure opposes gravity effectively and a gas cloud will not collapse

under its own gravity unless it attains a mass greater than the Jean’s mass given by

MJ = ρλJ
3 (1.78)

where λJ is the Jeans length given by

λJ = cs

√

π

Gρ
(1.79)

Here cs is the velocity of sound and ρ is the density of the gas cloud. Physically, λJ is the

length at which sound-crossing time is equal to the collapse time tcoll = Gρ−1/2.

Evolution of galaxy clustering and its relation to the clustering in the underlying dark

matter mass distribution is an important question that needs to be addressed before we

can interpret observations of clustering of galaxies. Models of structure formation make

predictions about the distribution of dark matter in terms of correlation functions and

higher moments of the matter distribution function. However, all we see are galaxies.

Observations tell us only about the clustering properties of galaxies and the distribution

of galaxies does not necessarily trace the underlying dark matter density field. Thus an

additional function that describes the difference between clustering of dark matter and

galaxies is required. This function is called bias. Bias can be defined in a statistical

manner as

b2 = Pgal(k, t)/Pdm(k, t) (1.80)

A similar definition of bias in real space is

b2 = ξ̄gal(r, t)/ξ̄dm(r, t) (1.81)

Here all the quantities carry their usual meaning. Bias defined as above is called deter-

ministic bias. Many studies have shown that the relation between galaxy clustering and

that of the underlying dark matter is not simple and this relation can, in general, be a

complicated function of scale, redshift and galaxy type (Gelb and Bertschinger, 1994a;

Brainerd and Villumsen, 1994; Mo and White, 1996; Bagla, 1998b; Tegmark and Peebles,

1998; Dekel A. and Lahav O., 1999; Sheth and Lemson, 1999; Sheth, Mo and Tormen,

2001; Norberg, 2001, 2002).
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1.6.1 Linear Redshift Distortions

In the preceding section we have introduced the concept of bias. In this subsection, we

will briefly review the analytical framework within which it is possible to estimate bias

from observations using linear perturbation theory. Observations of large scale structures

are carried out primarily in redshift space.

The Hubble law can be restated as follows : the recession velocity cz of a galaxy

is proportional to its distance d from us, i.e. cz = H0d. The recession velocity cz of

a galaxy can be measured from the redshift z of its spectrum a great deal more easily

and accurately than its true distance d. This has been a primary motivation for redshift

surveys which map the Universe in three dimensions using the recession velocity cz of

each galaxy as a measure of its distance. Galaxies also have peculiar velocities u relative

to the general Hubble expansion. Thus it is necessary in general to distinguish between

a galaxy’s redshift distance s :

s ≡ cz (1.82)

and its true distance r (in the same units) :

r ≡ H0d (1.83)

The redshift distance s of a galaxy differs from the true distance r by its peculiar velocity

ug ≡ r̂.ug along the line of sight :

s = r + ug (1.84)

The peculiar velocities of galaxies thus cause them to appear displaced along the line of

sight in redshift space. These displacements lead to redshift distortions in the clustering

of galaxies in redshift space. Although such distortions complicate the interpretation of

redshift maps as positional maps, they have the advantage of bearing information about

the dynamics of galaxies. Details of how peculiar velocities lead to redshift distortions is

illustrated schematically in fig.1.3. The dots are ‘galaxies’ and the arrows represent their

peculiar velocities. At large scales, the galaxies can be seen to be undergoing infall towards

a spherical overdensity; the peculiar velocity of an infalling shell is small compared to its
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Real Space : Redshift Space :

Linear regime

Turnaround

Small scales

Squashing effect

Finger of god

Collapsed

Figure 1.3: A simple schematic representation of redshift space distortion.

radius and the shell appears squashed. The shell that is just at turnaround, its peculiar

velocity just cancelling the general Hubble expansion, appears collapsed to a single velocity

in redshift space. At small scales, not only is the radius of a shell smaller, but also its

peculiar velocity tends to be larger. At small scales, large random peculiar motions in

virialised structures give rise to the finger-of-god effect.

The amplitude of redshift distortions on large scales is related to the linear redshift

distortion parameter β which is related to the density parameter Ωnr by

β =
f(Ωnr)

b
≈ Ωnr

0.6

b
(1.85)

b here is the bias factor and f(Ωnr) is the factor defined in eqn.1.43. A measurement of

beta, in principle, combined with an independent accurate measurement of the cosmolog-

ical parameters by observations like the Supernova Cosmology Project (Perlmutter et al.,

1999) and WMAP (Spergel et al., 2003) can be used to get a handle on the linear bias

parameter. For example, if we combine WMAP measurements (Ωnr ≃ 0.3) with the 2dF
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Galaxy Redshift Survey results (Verde et al., 2002), which give a value for β ≃ 0.43, we

find that the linear bias parameter b ≃ 1.

1.6.2 Identification of Haloes

In order to quantify bias through systematic N-Body simulation studies, one needs to

identify particles in “galaxies” from a full distribution of particles evolved in a simulation.

We may postulate that galaxies populate overdense regions in a uniform manner. There

are different methods of identifying overdense regions in numerical simulations. We will

describe a few of the methods here. We have used these methods to study the distribution

of overdense regions and haloes obtained using N-Body simulations.

• Friends-Of-Friends (FOF) Method : This is an efficient algorithm for halo identifi-

cation (Davis et al., 1985). The FOF method involves scanning through the list of

particles in a distribution. For each particle, one looks for particles whose distances

from it are smaller than some length l. This length is called the linking length.

The magnitude of the linking length specifies a minimum density cutoff for the en-

vironment surrounding any particle. If the distance to a particle is smaller than

the linking length, one makes a “link” and then looks around the linked particle in

a similar manner to identify new links. Each linked particle is also marked at the

same time as taken, i.e. it is assumed to belong to a unique group or halo. The

entire process is repeated till no more neighbours, i.e. particles which are within a

linking length of any linked particle, are to be found. The process has to be repeated

for all unlinked particles to generate other independent groups or haloes. In FOF,

every particle in a halo gets linked to every other particle in the same halo either

through a direct link (friend) or through links mediated by particles which share a

direct link with it (friend of friend). FOF sometimes fails to find separate groups

in cases when those groups are obviously present. It is known to link dynamically

distinct haloes (Gelb, 1992; Gelb and Bertschinger, 1994). The problem originates

from the tendency of FOF to “percolate” through bridges connecting, for example,
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interacting galaxies or galaxies in high density backgrounds (Klypin, 2000).

• Lagrangian Density Method : We compute the Lagrangian density at the positions

of particles. This is done by ordering neighbouring particles by distance from the

particle and then using the volume in which N particles are enclosed to estimate the

density. Recommended values of N are of order of 10, certainly less than 100. The

volume enclosed is taken to be a sphere of radius R, where R is the average of the

distance to the Nth and (N + 1)th particles. All particles in high density regions

are identified by specifying a cutoff on the density. This method on its own does

not identify individual haloes or groups in isolation. However it can be adapted for

that purpose, as for example, in the group-finding algorithm HOP (Eisenstein and

Hut, 1998).

We have also studied the density profiles of individual haloes obtained using N-Body

simulations. The method that we have used for this purpose is called the Method of

Density Peaks (Tormen, Bouchet and White, 1997), where we find points of maxima

of density. Then we identify particles which belong to any maximum, i.e. lie within a

certain distance, say r, from it. A density field is constructed on a uniform grid from

the particle distribution using an interpolating kernel (Cloud-in-Cell or CIC in our case).

The density field is smoothed by convolution with a spherical tophat window function of

an appropriate smoothing radius. Local maxima of density are identified by scanning the

nearest grid points around every grid point. Each maximum or peak identified is mapped

to a cluster or a halo and the cluster centre is identified as the most dense point of the

clump, found iteratively as the centre of mass of spheres of increasingly smaller radius.

One starts with a large enough radius and the iteration is stopped when a fixed small

number of particles, say m, is left in the sphere. The position of the centre of mass of

these m particles is then identified as the final cluster centre. The centre found with this

method corresponds with very high accuracy to the highest density peak even in cases

of ongoing mergers between different clumps (Tormen, Bouchet and White, 1997). The

only free parameter in this method is the number m that determines when the iterative
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calculation should stop. It has been found that the scatter in the locations of the halo

centres due to different choices of m is negligible. We chose m = 15 for our studies.



Chapter 2

Cosmological N-Body Simulations

Numerical simulations of structure formation in the Universe are a powerful tool to un-

derstand and interpret cosmological observations. Simulations bridge the gap that of-

ten exists between basic theory and observations. Simulations are used for testing and

calibrating methods used for processing observations, to provide insight into non-linear

gravitational clustering, etc. The task of numerical simulations is to evolve density and

velocity perturbations with time in a given cosmological model.

Cosmological N-Body simulations that take only gravitational interactions into ac-

count can be used to obtain the large scale distribution of galaxies and clusters of galax-

ies. Cosmological simulations can incorporate a wide range of physics like gas dynam-

ics (Hernquist and Katz, 1989; Katz and Gunn, 1991; Hernquist, 1993; Steinmetz and

Mueller, 1993), chemistry and radiative transfer (Cen et al., 1990; Hernquist et al., 1996;

Meiksin and White, 2001). Inclusion of gravitational effects is mandatory and the rest

can be looked upon as refinements. State-of-the-art simulations can be used for studying

a variety of problems like the nature of the inter-galactic medium and the formation of

first stars. Our focus in this thesis is isolating and understanding the generic aspects

of evolution of gravitational clustering and we concentrate only on simulations involving

gravitational interactions.
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2.1 Struture of a General N-Body Code for Cosmo-

logical Simulations

In cosmological simulations, we use comoving coordinates and periodic boundary condi-

tions. Density and velocity distributions are represented by particles sampling the phase

space distribution. Trajectories are evolved using eqns.1.49.

An N-Body code consists of two modules - one computes the force field for a given

configuration of particles and the other moves the particles in this force field. These two

are called at each step so that the force field and the distribution of particles evolve in a

self-consistent manner. Apart from these, we need to set up the initial conditions.

The following important physical requirements have to be taken into account while

constructing a viable N-Body code for cosmological simulations.

• Density averaged over larger and larger scales in the Universe tends towards a con-

stant value. Thus the simulation volume V cannot be assumed to exist in isolation.

Periodic boundary conditions are a simple solution to this problem (Peebles, 1980).

• The average density of the simulation volume (usually a cube in three dimensions)

should be equal to the average density of the Universe. Thus perturbations averaged

at the scale of the simulation box and at larger scales must be ignorable at all times

in the model of interest i.e. σ(R = V 1/3) ≪ 1. For example, in the case of the

ΛCDM model this implies that the box should be at least 150h−1 Mpc at (z = 0)

in extent (Bagla and Ray, 2004).

• We must probe scales that are sufficiently non-linear in order to justify the use of

N-Body simulations. If we are interested in comparing the results of a N-Body

simulation with observations, simulations should be able to study the formation

of galaxies. If we want to resolve masses of the order of galaxies, the masses of

individual particles must be much less than the mass of a galaxy (Mpart ≪ Mgal)
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and hence the minimum number of particles required for a box of comoving size,

say 150h−1 Mpc will be

Np ≥
M(150h−1Mpc)

0.1Mgalaxy

≃ 5 × 1017M⊙

1010M⊙

≃ 5 × 107 (2.1)

Thus we need a very large number of particles for realistic simulations. Cosmological

N-Body methods are oriented towards reducing the number of operations and stored

quantities per particle in order to facilitate large simulations.

• In an N-Body simulation, we have to approximate a large number of particles by

a single particle. Therefore particles in an N-Body simulation must interact in a

purely collisionless manner at small separations. The desirable force is a softened

inverse square law representing the force between two finite-sized particles with

extended mass distribution, say W (r, ǫ). ǫ here is called the softening length and it

represents the finite size of a particle. The force due to a finite-sized particle can

be obtained by solving the Poisson equation with a source term given by the mass

distribution of the particle :

ρ(r) = mW (r, ǫ) (2.2)

For a normalised cubic spline kernel used in the SPH formalism (Monaghan, 1992),

W (r, ǫ) has the following form :

W (r, ǫ) =
(
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The cubic spline-softened force f is given by the following expression :

f(r) =








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
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(2.4)

The softening length for the force is the smallest scale that can be resolved in

an N-Body simulation and this should be of the same order as the mean inter-

particle separation for collisionless evolution. Smaller force softening requires more

timesteps and also leads to increased two-body relaxation (Huang, Dubinski and

Carlberg, 1993; Melott et al., 1997; Binney and Knebe, 2002).
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2.1.1 Initial Conditions

Initial conditions for simulations of structure formation consist of specifying the back-

ground cosmological model and a description of perturbations to be studied. The back-

ground model is generally taken to be a Robertson-Walker spacetime with a specified mix

of dark matter, baryons, cosmological constant, etc. The nature of dark matter must be

specified as well. The statistical nature of the primordial fluctuations depends on how

these are generated. We will assume the initial density field to be a Gaussian random

field with a specified power spectrum Pδ(k) in our simulations (Klypin and Shandarin,

1983; Efstathiou et al., 1985; Bagla and Padmanabhan, 1997a; Hoffman and Ribak, 1991;

Bertschinger, 2001). Gaussian random fields are simple to study as these are fully speci-

fied by one function, the power spectrum P (k) (Peacock and Heavens, 1985; Bardeen et

al., 1986). The Fourier components of a Gaussian random field (both the real and the

imaginary parts) are random numbers which follow a normal distribution with variance

proportional to the power spectrum of the random field. This property is used to generate

a Gaussian random field in Fourier space and an inverse transform gives us the field in

real space.

Once the initial linear density fluctuation field (or the initial gravitational potential)

has been specified at some initial time, the next task is to generate particle positions and

velocities. There are two schemes for generating the initial density field.

• The particles are distributed uniformly and their masses are chosen so that M =

ρ̄(tin)(1 + δin)dV , where δin is evaluated at the positions of the particles. Here dV

is the volume in the simulation box per particle and ρ̄(tin) is the average density at

time tin. We can either start with zero velocities, in which case we have to increase

the amplitude of φin by a factor 5/3 to account for the presence of the decaying

mode. Alternatively we can choose to put the system in the growing mode and

assign an appropriate velocity to each particle.

• The second method for dark matter simulations is to displace equal-mass particles
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from a uniform distribution using the Zeldovich approximation (Zeldovich, 1970;

Doroshkevich et al., 1980; Dekel, 1982; Efstathiou et al., 1985). It is important

to ensure that in this case the maximum displacement for any particle is smaller

than the average inter-particle separation in the simulation box. Then the result-

ing distribution of particles will represent the required density field (Bagla and

Padmanabhan, 1997a; Bagla, 2004b) if the initial distribution did not have any in-

homogeneities. We can retain the initial velocity field used to displace particles. If

the amplitude of displacements used is larger than the average inter-particle sep-

aration, it becomes necessary to recompute the potential from displaced positions

and assign initial velocities with this potential (Efstathiou et al., 1985). Such large

displacements can lead to an incorrect realisation of the power spectrum.

The source term in the Poisson equation (eqn.1.48) is constant in the linear regime,

implying that the potential and hence the gravitational force g do not evolve with time

in this regime. It can also be shown that the generalised velocity v is also a constant in

this regime. This implies

v(x, b) = v(x) = g(x, b) = g(x) (2.5)

This equation is valid only in the regime where the amplitude of perturbations is small

i.e. |δ| ≪ 1. However, one can extrapolate this equation beyond the regime where it is

strictly valid. This extrapolation leads to the Zeldovich approximation where velocities

are constant in Lagrangian space. Thus the velocity of each particle is constant and equals

its initial velocity given by

v(x, b) = v(q) = g(q) (2.6)

where q is the Lagrangian position of the particle, same as its initial position and x is its

Eulerian position. Then

x = q + b(t)g(q) (2.7)

Particles move with a uniform velocity that is determined by the initial potential. The

Zeldovich approximation is a one-step mapping between the initial and the final condition.
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Approximate constancy of velocities results from two opposite effects acting over similar

time scales, namely the expansion of the Universe and the gravitational force of density

perturbations.

To generate initial conditions in N-Body simulations by the second method described

above, particles are displaced from a uniform grid according to the prescription given by

eqn.2.7. q labels the position of a particle on the grid. We need to first generate the

gravitational potential ψ in order to obtain g = −∇ψ in eqn.2.7. As the potential ψ and

the initial density contrast are related through a linear equation (eqn.1.48), it follows that

Pψ(k, a) = Pδ(k, a)/a
2k4 = P lin

δ (k, a = 1)/k4 (2.8)

Here P lin
δ (k, a = 1) is the linearly extrapolated power spectrum of initial density fluctua-

tions.

2.1.2 Integrating the Equations of Motion

We integrate the equation of motion using a second-order accurate leap-frog integration

scheme as this requires only one force evaluation per timestep.

xi(t+ ∆t) = xi(t) + ∆tvi(t+ ∆t/2) +O(∆t3)

vi(t+ 3∆t/2) = vi(t+ ∆t/2) + ∆tai(t+ ∆t) +O(∆t3) (2.9)

This method is called the leap-frog method (Hockney and Eastwood, 1988) because it

updates velocities halfway between the step that is used to update the position. Force

evaluation is very time-consuming and one has to minimise the number of force evaluations

per timestep. It is mainly due to this reason that cosmological N-Body simulations use

the leap-frog method as it requires only one evaluation of force, but still gives errors of

O(∆t3). We can recast the leap-frog method so that velocities and positions are defined

at the same instant (Hut, Makino and McMillan, 1995).

It has been shown that with a timestep such that that all particles move by less

than the softening length (the Courant condition), the correlation function and other
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quantities converge to correct values (Quinn et al., 1997). Also timestep is chosen so

that momentum is conserved and energy evolves according to the Irvine-Layzer equation

(Layzer, 1963). Monitoring consistency with the Irvine-Layzer equation requires care and

adds considerably to the number of operations to be carried out in an N-Body simulation.

Hence it is usual to carry out test runs and fix the value of timestep ∆t. The ideal ∆t

will depend on the distribution of particles and as the distribution evolves, the desirable

value of ∆t changes. We allow ∆t to vary with time.

For velocity-dependent forces, as is the case for the equations that we use, the leap-

frog method is replaced by a predictor-corrector integrator. Here the equation for the

velocity is solved iteratively. Higher-order schemes of integration provide more accurate

trajectories with longer timesteps. But these are rarely used in cosmological simulations

as these require multiple force evaluations per step.

2.1.3 Scale Invariant Evolution of Power Law Spectra

Hierarchical clustering from scale-free initial conditions i.e. initial power spectra P (k) ∝
kn in an Einstein deSitter Universe is expected to evolve in a self-similar manner. A

powerful test for any N-Body simulation is the requirement that the evolution of power

law models be scale-invariant even in the strongly non-linear regime. Although scale-free

initial conditions differ from realistic models, they are useful for understanding non-linear

gravitational instability and have therefore been studied extensively. The only scale in

purely gravitational evolution of a scale-free initial power spectrum is the scale at which

non-linearity sets in, defined by ξ(rnl) = 1. As ξ(r) ∝ a2 in linear theory, we have

rnl(t) ∼ a2/(n+3) (2.10)

For clustering in two dimensions,

rnl(t) ∼ a2/(n+2) (2.11)

If evolution is scale invariant, ξ(r, a) = ξ(r/rnl) at all epochs. This requirement can be

used to fix the value of the timestep ∆t for integration of the equation of motion.
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2.2 Algorithms for N-Body Simulations

Integration of the equation of motion in an N-Body code is a process of O(Np), where

Np is the total number of particles in the simulation. But the calculation of force, if

performed by summing the force over all pairs, is a process of O(Np
2). Evaluating the

force by direct summation over all particle pairs is prohibitive except with special purpose

computers like GRAPE (Toshikazu et al., 1993). Many schemes have been proposed to

replace direct summation over pairs by approximate methods of force evaluation.

2.2.1 The Particle-Mesh Method

The Particle-Mesh (PM) method is based on representing the gravitational potential on

a Cartesian grid (with a total of Ng grid points) and solving the Poisson equation on this

grid. The Fast Fourier Transform (FFT) algorithm (Cooley and Tukey, 1965) is used to

solve the Poisson equation with (Ng logNg) operations. Periodic boundary conditions are

the default in this method, making this algorithm natural for cosmological simulations

(Klypin and Shandarin, 1983; Bouchet and Kandrup, 1985). The PM method has been

discussed in great detail in Hockney and Eastwood (1988).

The PM algorithm has three major components. The density field represented by

particles is computed on a grid. The Poisson equation is then solved for the gravitational

potential φ and the force g = −∇φ. Finally, the potential or the force on the grid is

interpolated on to particle positions.

The first step is called mass assignment : ρ(x, t) is computed on the grid from discrete

particle positions and masses. The simplest method assigns each particle to the nearest

grid point (NGP), with no contribution of mass to any other grid point. This method

produces rather large errors (Efstathiou et al., 1985; Hockney and Eastwood, 1988). The

most commonly used assignment scheme is the Cloud-in-Cell (CIC), which uses multilinear

interpolation to the eight grid points defining the cubical mesh cell containing the particle.
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This procedure effectively treats each particle as a uniform-density cubical cloud. The

sharp edges introduce force fluctuations, which can be reduced by using a higher-order

interpolation scheme (e.g. Triangular Shaped Cloud or TSC, which uses the nearest 27

grid points). These discretization errors are similar to aliasing errors that occur in image

processing. They may be reduced further using a suitable anti-aliasing filter [Quiet PM

(Hockney and Eastwood, 1988)].

The Poisson equation is then solved in Fourier space :

φk(t) = −4πG
ρk(t)

k2
(2.12)

Here φk and ρk are the discrete Fourier transforms of the density and potential respec-

tively. One may replace the inverse Laplacian operator −1/k2 by another multiplicative

factor in Fourier space, including an anti-aliasing filter. The gravitational field is then

obtained by transforming the potential back to the spatial domain and approximating the

gradient by finite differences, or by multiplication by ιk in the Fourier domain. The latter

method requires twice as many FFTs and more memory allocation for its implementation.

But it does not necessarily require more computing cycles compared to the former and

leads to more accurate forces (Ferrell and Bertschinger, 1994).

The third step is to interpolate the gravitational force from the grid back to the

particles. The same interpolation scheme should be used here as in mass assignment to

ensure that self-forces on particles vanish (Hockney and Eastwood, 1988) and momentum

is conserved. The PM method has the advantage of speed, requiring O(Ng logNg) op-

erations to evaluate the force on all particles. For typical grid sizes (with as many grid

points as particles in each dimension), it requires less memory and is faster per timestep

than other algorithms. However, the force approximates the inverse square law poorly

for particles separated by less than several grid spacings. Each particle has an effective

diameter of about one grid spacing and a non-spherical shape. PM codes are widely used

for large scale cosmological simulations. The PM algorithm has been parallelized (Ferrell

and Bertschinger, 1994; Merz, Pen and Trac, 2004). For more details on the Particle-Mesh

method, we refer the reader to other sources (Hockney and Eastwood, 1988; Bouchet and
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Kandrup, 1985).

2.2.2 The P 3M and the Adaptive P 3M Methods

The main shortcoming of the Particle-Mesh method is that its force resolution is lim-

ited by the spatial grid. This limitation can be removed by supplementing the force

with a direct sum over pairs separated by less than a few grid spacings, resulting in the

particle-particle/particle-mesh (P 3M) algorithm. This hybrid algorithm, first developed

for plasma physics by Hockney et al. (1974), was applied in cosmology by Efstathiou

and Eastwood in 1981. It is described in detail in Hockney and Eastwood (1988) and

Efstathiou et al. (1985). The P 3M method achieves high resolution in force through

the combination of mesh-based and direct summation forces. The mesh can be regarded

as simply a convenience for providing periodic boundary conditions and removing much

of the burden of computation from direct pair summation. However, when clustering

becomes strong, the cost of the direct summation dominates and this degrades the perfor-

mance of P 3M codes. The mesh-refined P 3M algorithm (Couchman, 1991) presents an

elegant solution to this bottleneck. A refined mesh is placed over regions of high density.

This shifts some of the burden of force evaluation away from pair summation and over to

a mesh calculation with isolated boundary conditions. Pair summation is still required,

but only for pairs with separation less than two spacings of the refined mesh. In this

method, multiple levels of refinement can be used to further reduce pair summation in

dense regions. Because the pair summation no longer dominates as it does in P 3M , the

force computation of the adaptive P 3M (AP 3M) scales as O(Np logNp). The P 3M algo-

rithm has been parallelized (Ferrell and Bertschinger, 1994; Pearce and Couchman, 1997).

The P 3M algorithm has a few shortcomings. The correction for the long range force is

assumed to be isotropic, while the standard PM force has anisotropies at the grid scale

due to the anisotropic mesh structure. Thus the resulting force (long range + short range

correction) is anisotropic at the grid scale. Also, short range correction in force is added

only upto 1.5 to 2.0 grid lengths, whereas the PM method is known to underestimate the

force out to a much larger distance (Bouchet and Kandrup, 1985). Finally, the refined
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inter-particle force is softened at scales much smaller than the average inter-particle sepa-

ration which can lead to two-body scattering and relaxation, which, in turn, may modify

the nature of statistical quantities of interest like the two-point correlation function, etc.

(Melott et al., 1997; Binney and Knebe, 2002; Bagla, 2004b).

2.2.3 The Tree Method

An alternative to Fourier space based methods is the tree method. In this scheme, the

particles are arranged in a hierarchy of groups. When the force on a particular particle is

computed, the forces exerted by distant groups are approximated by their lowest multipole

moments. In this way, the computational cost for a complete force evaluation is reduced

to O(N logN) (Appel, 1985). The forces become more accurate if the multipole expansion

is carried out to higher order, but the increasing cost of evaluating higher moments makes

it more efficient to terminate the multipole expansion and use a larger number of nodes

to achieve the desired accuracy (McMillan and Aarseth, 1993).

The Barnes and Hut (BH) method (1986) is commonly used for tree construction.

In this scheme, the computational domain is hierarchically partitioned into a sequence of

cubes, where each cube contains eight siblings, each with half-the-side length of the parent

cube. These cubes form the nodes of an oct-tree structure. The tree is constructed such

that each node (cube) contains either exactly one particle or eight smaller nodes, in which

case the node carries the monopole (and/or quadrupole moments) of all the particles that

lie inside. A schematic illustration of the BH tree is shown in fig.2.1.

Force computation then proceeds by summing up appropriate contributions from tree

nodes. In the standard BH tree walk, the multipole expansion of a node of size d is used

only if

θ =
d

r
≤ θc (2.13)

where r is the distance of the point of reference to the center-of-mass of the cell and θc

is a prescribed accuracy parameter also called the cell-opening angle. If a node fulfills
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Figure 2.1: Schematic illustration of the Barnes and Hut oct-tree in two dimensions. The particles are
first enclosed in a square (root node). This square is then iteratively subdivided into four squares of half
the size, until exactly one particle is left in each final square (leaves of the tree). In the resulting tree
structure, each square can be progenitor of up to four siblings. Note that empty squares need not to be
stored.
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the so-called cell acceptance criterion (2.13), the tree walk along this branch can be

terminated, otherwise the node is ‘opened’ and the walk is continued with all its siblings.

For smaller values of the opening angle the forces become more accurate, but it requires

more computing time. Other cell acceptance criteria have been proposed to obtain higher

efficiency (Salmon and Warren, 1994; Springel, Yoshida and White, 2001).

A technical difficulty arises when the gravitational force is softened. In regions of high

density, it can happen that nodes satisfy the cell acceptance criterion and simultaneously

r < ǫ, where ǫ is the force softening length. In this situation, the multipole moments of

the softened gravitational field are required. It is possible to work around this situation

by opening all nodes for r < ǫ, but this can slow down the code significantly. Another

solution is to use the proper multipole expansion for the softened potential (Springel,

Yoshida and White, 2001).

The tree algorithm has a number of important advantages (Hernquist, 1987). Fore-

most is its speed as already mentioned : O(Np logNp) operations are required to compute

all forces on Np particles. Force errors can be made small by choosing θc to be small

and by including quadrupole and high-order moments. The hierarchical tree automati-

cally refines resolution where needed. While mesh-based codes are generally much faster

for close-to-homogeneous particle distributions, tree codes can adapt to any distribution

without significant variation in speed. This Lagrangian nature is a great advantage if a

large dynamic range in density is required. Further, tree codes are basically free from

any geometrical restrictions and these can be easily used with integration schemes that

advance particles on individual timesteps.

One drawback of tree codes is the large amount of memory required - 20 to 30 vari-

ables are required per particle. Another complication is that the tree algorithm, like

direct summation, does not provide periodic boundary conditions in an obvious manner.

This can be incorporated using Ewald summation (Ewald, 1921), leading to a tree code

for cosmological applications (Rybicki, 1986; Bouchet and Hernquist, 1988; Hernquist,

Bouchet and Suto, 1991; Springel, Yoshida and White, 2001). The tree algorithm can be
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easily parallelized (Salmon and Warren, 1994; Dubinski, 1996).

PM and tree solvers have been combined into hybrid tree-Particle-Mesh codes (Xu,

1995; Bode, Ostriker and Xu, 2000; Bagla, 2002; Dubinski, 2004). In this approach, the

speed of the PM method for computing the long range part of the gravitational force is

combined with a tree computation of the short range force. At a basic level, this can be

seen as a replacement of the direct summation (particle-particle) part in P 3M codes with

a tree algorithm. We will discuss the TreePM method in greater detail in later chapters.



Chapter 3

Performance Characteristics of
TreePM Codes

In this chapter we will describe the TreePM method in detail with particular emphasis

on the error budget for the method1. All methods of N-Body simulations use some

approximation or the other to speed up the calculation of force. Approximations are used

because direct summation over all pairs of particles scales as O(Np
2), where Np is the

number of particles, making the calculation very time consuming for large Np. The use of

these approximations reduces the number of calculations required to O(Np lnNp) or less.

These approximations also introduce inaccuracies in the computed force. In this chapter,

we analyse errors in estimation in force and also study errors for different distributions of

particles for the TreePM method.

3.1 The TreePM Method

Several attempts have been made to combine a tree code with a PM code (Xu, 1995;

Dubinski, 2004). A common failing of all such methods is that these continue to use the

usual PM force which is known to have large errors and anisotropies at scales comparable

to the grid scale (Bouchet and Kandrup, 1985). These errors are present in the final force

1This chapter is based on Performance Characteristics of TreePM Codes (J.S. Bagla and S. Ray), New
Astronomy 8, 665, 2003.
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and there is no natural way of reducing the errors in any of these methods.

The TreePM method is a hybrid N-Body method which combines the Barnes and Hut

(1986) tree method with a Particle-Mesh method. However, the philosophy of TreePM

method is to modify the long range force in order to have a better control over errors

in force at small scales. This is done by an explicit division of the potential and the

force into long range and short range components. The PM method is then used to

compute only the long range component and the tree method is used to calculate the

short range component (Bagla, 2002). Use of a tree code enhances the force resolution.

The gravitational potential can be split into two parts in Fourier space (Ewald, 1921) :

ϕk = −4πG̺k
k2

= −4πG̺k
k2

exp
(

−k2r2
s

)

− 4πG̺k
k2

[

1 − exp
(

−k2r2
s

)]

= ϕlk + ϕsk

ϕlk = −4πG̺k
k2

exp
(

−k2r2
s

)

(3.1)

ϕsk = −4πG̺k
k2

[

1 − exp
(

−k2r2
s

)]

(3.2)

where ϕl and ϕs are the long range and the short range potentials respectively. The

splitting is done at the scale rs. G is the gravitational coupling constant and ̺ the

density. The short range potential and force (for a single particle) are evaluated in real

space, using the following expressions :

ϕs(r) = −GM
r

erfc
(

r

2rs

)

fs(r) = −GMr

r3

[

erfc
(

r

2rs

)

+
r

rs
√
π

exp

(

− r2

4r2
s

)]

(3.3)

Here, erfc is the complementary error function. The expression for the long range force

for a single particle in real space is :

f l(r) = −GMr

r3

[

erf
(

r

2rs

)

− r

rs
√
π

exp

(

− r2

4r2
s

)]

. (3.4)

We have plotted the long range (eqn.3.4) and the short range force (eqn.3.3) as a

function of r in fig.3.1 to show their dependence on scale. We have chosen rs = 1 here.
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Figure 3.1: This figure shows the long and the short range forces as a function of scale. The inverse
square force is shown by the solid line, the long range force by the dot-dashed line and the short range
force by the dashed line. We have taken rs = 1 here.
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The total 1/r2 force is shown by the solid line. The short range force (dashed line) follows

the total force up to about 2rs and decreases rapidly at larger scales, its magnitude falls

below 1% of the total force by 5rs. So the short range force needs to be taken into account

only over a small region around every particle - we denote the radius of this region as

rcut. The long range force reaches a peak around 2rs. It makes up most of the total force

beyond 3.5rs. It falls linearly with scale below 2rs, becoming negligible below rs/2. We

take the long range force into account at all scales.

Eqn.3.1 and eqn.3.3 provide a prescription for computing the long range and the short

range forces independently. As mentioned above, the short range force is computed in

real space using the tree method and the long range force is computed in Fourier space

using the PM method. Both of these are computed for every particle in a simulation.

3.1.1 Filter Functions

The filter function used in Ewald’s method of splitting the gravitational potential is

F = exp [−k2r2
s ] because this function has a useful feature that it is positive definite, as

is its Fourier transform. One can generalise to a case in which the partition of unity can

be described in terms of equations as follows :

ϕk = ϕsk + ϕlk (3.5)

ϕlk = ϕkF (krs, . . .) (3.6)

ϕsk = ϕk (1 − F (krs, . . .)) (3.7)

Here F (krs, . . .) is a filter function that is unity for krs ≪ 1 but decreases rapidly for

krs > 1. As before, rs is used to partition the short range and long range forces. F

can also depend on some other parameters. This manner of partitioning the force allows

us to control errors in both components of force. We require a function F (krs, . . .) that

decreases sufficiently quickly at krs > 1. Similarly in real space, the short range potential

and force should become negligible at scales larger than a few rs and the long range force

should be negligible below rs.
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Figure 3.2: In this figure we have plotted the ratio of the short range/long range force and the inverse
square force for a choice of filters as a function of distance. The upper panel shows curves for filters
described by eqn.3.8 and the lower panel that for filters described by eqn.3.9. For reference, we have also
plotted the curve for α = 2 in the lower panel. In the upper panel, the dashed curve, the solid curve,
the dot-dashed curve and the dotted curve correspond to α = 1.0, 2.0, 2.5 and 4.0 respectively. In the
lower panel, the solid curve refers to α = 2.0 and the dotted, dashed and dot-dashed curves correspond
to n = 1, 2 and 4 respectively.
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We have studied filters belonging to two families of functions :

F (krs, α) = exp
[

−
(

k2r2
s

)α/2
]

(3.8)

F (krs, n) =
(

1 + k2r2
s

)−n
(3.9)

Here α and n are additional parameters. For α = 2 in eqn.3.8, we recover the one-

parameter filter used in Bagla (2002). Fig.3.2 shows the ratios |f s/f tot| and |f l/f tot| as

functions of scale r for these models. We have chosen rs = 1 for this figure. The upper

panel shows these ratios for the models described by eqn.3.8 and the lower panel shows

the same for models described by eqn.3.9. In the upper panel, we see that the short range

force for α < 2 decreases very slowly at large scales, making it an unsuitable choice. For

α > 2, the short range force oscillates at large scales and the amplitude of the peaks

decreases very slowly with scale. Hence these models too are not useful as an alternative

to the α = 2 model. Models described by eqn.3.9 are shown in the lower panel. In this

case the behaviour is better than models with α 6= 2 in that the long and the short range

forces both fall off much faster. However, the model with α = 2 is better than any of

these models. This model is plotted in the lower panel as the solid curve. We would like

the overlap between the short and long range forces to be as small as possible. For one, a

rapidly decreasing short range force implies that we need to sum this over a small region in

space. Computation of the short range force is the most time consuming part and hence a

sharply falling short range force is required for a well optimised code. The second reason,

which requires us to have a long range force that decreases rapidly below some scale, is

that the mesh introduces large errors at around the grid scale. The main motivation of

considering an explicit division of force into a long range and a short range components

is to avoid carrying over the errors in the mesh force by truncating the long range force.

Thus we want to use the model for which the range of scales at which both the long range

and the short range components are relevant is the narrowest. The Gaussian filter is the

optimum one in this regard and no other filter comes close to this. We shall not discuss

other filters from this point onwards as fig.3.2 suggests that the Gaussian filter is the best

option.
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3.2 Error Analysis

We wish to estimate the error in force computed using the TreePM method. We first study

errors in the force field of one particle. As the tree approximation does not introduce any

errors for a single particle, we can focus exclusively on errors in the long range force.

3.2.1 Errors in the Long Range Force

The long range force is computed by solving eqn.3.4 in Fourier space. The long range

force computation is essentially done using the PM method, but with a different kernel.

We have described the Particle-Mesh method in Chapter 2. We use the cloud-in-cell

(CIC) interpolating function (Hockney and Eastwood, 1988). In three dimensions, the

interpolating function is a product of three one-dimensional interpolating functions.

W (x, xi) = 1 − |x− xi|/L |x− xi| ≤ L (3.10)

= 0 |x− xi| > L (3.11)

Here L is the separation between adjacent mesh points. The Fourier transform of W is

given by

W (k) = 4 sin2(kL/2)/(kL)2 (3.12)

Fig.3.3 is a plot of this interpolating function in Fourier space against k/kg. kg = 2π/L is

twice the Nyquist frequency. In the continuum limit we require the interpolating function

to be like the Dirac Delta function, the Fourier transform of which will be a constant equal

to one. We can see from the figure that the departure from unity for W increases with k,

i.e. the error that is induced by the interpolating function is significant at small scales.

This leads to a serious shortfall in the force computed in a simulation at small scales.

This becomes clear in Fourier space analysis (Bouchet and Kandrup, 1985; Hockney and

Eastwood, 1988).

In the Particle-Mesh model, the density field on the mesh is Fourier transformed using

a Fast Fourier Transform (FFT). The next step is to solve eqn.3.1 instead of the usual
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Figure 3.3: We have plotted the CIC interpolating function as a function of k/kg, where kg is twice the
Nyquist frequency. The Fourier transform of a Dirac Delta function is a straight line at y = 1 parallel to
the x-axis in this figure.
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Poisson equation (eqn.2.12) to get the long range potential on the mesh. We have to

multiply this with ιk to get the negative gradient of the long range potential i.e. the long

range force in Fourier space.

We compare the errors introduced by the interpolating function W in the k-space

total force and the k-space long range force for one particle. In our model, the long range

force on a unit point mass due to a unit point mass source at the origin is

f l(k) = W (−kx)W (−ky)W (−kz)
4πG

k2
exp(−k2r2

s)k (3.13)

The corresponding total force (the standard Particle-Mesh force) is

fpm(k) = W (−kx)W (−ky)W (−kz)
4πG

k2
k (3.14)

The expected long range force is

fth
l(k) =

4πG

k2
exp(−k2r2

s)k (3.15)

And the expected total force is

fth(k) =
4πG

k2
k (3.16)

We have plotted the expected total force, the expected long range force as well as the total

force and the long range force computed from the model as a function of k/kg in fig.3.4.

For simplicity, we have restricted ourselves to one dimension, i.e. we have computed the

force for a single component of k with the interpolating function W also evaluated only

along that direction. We have chosen rs = 2 for the plot. For small values of k/kg, the

forces computed by the Particle-Mesh model closely match the expected values. However,

deviations grow at large k due to errors induced by the interpolating function.

We define errors in the total force and the long range force in our model as follows :

ǫpm ≡
∣

∣

∣

∣

∣

|fth| − |fpm|
|fth|

∣

∣

∣

∣

∣

(3.17)

ǫl ≡
∣

∣

∣

∣

∣

|fthl| − |f l|
|fth|

∣

∣

∣

∣

∣

(3.18)

at all points k. We have plotted ǫpm and ǫl as functions of wavenumber k in fig.3.5. The

error in the standard Particle-Mesh force increases monotonically with k, while the error
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Figure 3.4: We have plotted the Fourier transforms of the expected total force (thick full line), the
expected long range force (full line) as well as the total (dashed line) and long range (dotted line) forces
obtained from the PM model as a function of k/kg in 1-d, where kg is twice the Nyquist frequency. The
four curves match at small wavenumbers. But the PM force and the long range force in the model start
deviating from the expected total and long range forces respectively at large k or at small scales where
the interpolating function starts to play a significant role. We have chosen rs = 2 for this plot.
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Figure 3.5: This figure shows the fractional error (with respect to the expected total force) in the long
range force and the total force in the PM model as a function of k/kg, where kg is twice the Nyquist
frequency. At large k, the long range force is exponentially small and hence contributes less to the error
in the total force. We have taken rs = 2 here.

in the long range force in the model reaches a peak and then decreases with increasing

wavenumber. At short scales, the error in the long range force is lower than the error in

the total force. This is because the long range force becomes negligible at small scales

(refer to fig.3.4) and hence the error contributed to the total force is small.

As the next step we study the long range force in real space. An inverse transform of

the long range force in k space using FFT gives us the long range force in real space at mesh

points. This is then interpolated back to particle positions using the same interpolating

function W as before. In our model, the mesh and the interpolating function W are the
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main sources of anisotropy. To estimate errors in the long range force in real space, we

follow the method prescribed by Efstathiou et al. (1985). We place a particle at a random

position in a mesh cell and use the TreePM code to find the long range force at another

point. The force is evaluated at a large number of random points within some distance

from the particle in question. This process is repeated a number of times with a different

position of the particle in the mesh cell. We use force calculated this way to compute

the average long range force as a function of distance as well as the dispersion about this

average. Fig.3.6 shows a plot of the average long range force (dot-dashed curve) and the

expected long range force given by eqn.3.4 (solid curve) as functions of scale. We used

rs = 1 for this plot. There is a clear under-estimation of the computed average long range

force at small scales.

The difference between the expected force and the computed force is caused mainly

by the interpolating function. Fourier space analysis (Bouchet and Kandrup, 1985; Hock-

ney and Eastwood, 1988) suggests that we should be able to recover the expected long

range force by de-convolving the interpolating function. We deconvolve2 the interpolating

function twice as we use it twice in force calculation - once for calculating the density on

the mesh and then for calculating the force at the positions of particles.

Deconvolution of force will not work in general as it will enhance anisotropies intro-

duced by the mesh. However in this case the contribution of wave modes near the Nyquist

frequency is negligible due to the Gaussian filter. Partial correction can be obtained by

deconvolving for the effect at small wave numbers by considering the Taylor expansion of

Wk about k = 0 (White, 2000a).

The effect of deconvolution on the long range force is seen in fig.3.6 and fig.3.7. The

force obtained in the simulation (dashed line) almost coincides with the expected force

over the entire range of scales. We have plotted the difference of the average long range

2We divide the potential in k-space by the square of the Fourier transform of the interpolating function.
Since the three dimensional interpolating function is a product of three one-dimensional interpolating
functions, we are essentially dividing ϕk by W 2

kx
W 2

ky
W 2

kz
. The square of each of these needs to be taken

as we need to correct for two instances of interpolation.
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Figure 3.6: Long range force for a single particle is shown as a function of distance. The solid line
shows the expected long range force (eqn.3.4), the dot-dashed curve the long range force obtained in the
simulation and the dashed line the long range force obtained in the simulation after removing the effect
of the interpolating function. This curve was drawn for rs = 1. One can see that the difference between
the expected force and that from the simulation decreases strikingly after deconvolution.
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Figure 3.7: The upper panel shows the fractional error in the long range force due to a particle as a
function of scale. Difference of the computed long range force from the expected long range force (eqn.3.4)
is scaled by the expected long range force for the dot-dashed curve. The same difference is also scaled by
the inverse square force and is shown by the dotted curve. The latter curve is more relevant for studying
the contribution to the error in force. Curves showing the fractional error after removing the effect of
interpolating function are also plotted here. The dashed curve shows the fractional error when scaled
with the long range force and the solid curve shows the fractional error scaled with the inverse square
force. For this case the peak fractional error when scaled by the inverse square force is less than 0.4% for
rs = L. The lower panel shows the peak fractional error as a function of rs (in units of L).
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Figure 3.8: The upper panel shows the dispersion about the average long range force for rs = L with
deconvolution of the interpolating window function. This dispersion scaled by the long range force is
shown by the solid curve. Dispersion scaled by the inverse square force is shown by the dashed line.
The peak dispersion in this case is just over 1.4% of the inverse square force. The lower panel shows the
maximum value of dispersion scaled by the inverse square force as a function of rs (in units of L).
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force and the expected long range force (eqn.3.4) divided by the expected long range force

in fig.3.7. We have also plotted the difference divided by the total force as this is more

relevant for errors. We have plotted these for the average force as well as the average

force obtained after deconvolution. The difference between the average long range force

and the expected long range force (eqn.3.4) normalised by the total force drops by nearly

one order of magnitude after deconvolution. Fractional error is below 0.4% for the entire

range of scales. One can lower this further by using a larger rs, or use a smaller rs if larger

errors are acceptable. Fig.3.7 also shows the maximum fractional error as a function of

rs. We use the long range force with deconvolution of the interpolating function W in the

TreePM code.

The upper panel of fig.3.8 shows the dispersion in the long range force due to a single

particle about the average value in a simulation. We have plotted rms dispersion about

the average force as a function of r in the figure. We have normalised this with the long

range force (eqn.3.4) and the total force. The latter curve is relevant for errors in the total

force. The rms dispersion about the average long range force reaches a peak of about 1.4%

near r = 2rs. The dispersion decreases as we increase rs. The lower panel of fig.3.8 shows

the variation of the maximum rms dispersion, normalised by the inverse square force, as

a function of rs.

We can summarise our investigations of the errors in the long range force for a particle

as follows : Maximum deviation of the average long range force from the theoretical

expectation is around 0.4% and is much smaller at most scales. Dispersion about the

average peaks at a value of 1.4% and is well below 1% for most scales. These values are

for rs = L and the error is maximum around 2rs, errors fall off rapidly on both sides of

2rs. Errors decrease as we increase rs.
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r

ri

P

ψi

Figure 3.9: This shows a general distribution of point masses (m = 1) with position vectors ri (i =
1, n). The centre of mass of the system is at the origin. We calculate the potential at a point, say P, with
position vector r w.r.t the centre of mass. The size of the system is assumed to be small compared to |r|.
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Figure 3.10: Schematic representation of a situation when two particles are at the diagonally opposite
ends of a cell. Refer to text for details.

3.2.2 Errors in the Short Range Force

The tree approximation is used here for computing the short range force which differs from

the usual inverse square force. We expect errors to be different in this case. Consider

a general distribution of point masses (m = 1) with position vectors ri (i = 1, n) and

assume that the centre of mass of the system is at the origin. We calculate the potential

at a point P with position vector r w.r.t the centre of mass. We assume that the size of

the system is small compared to |r|. Fig.3.9 is a simple schematic representation of such

a system. Then

Vtot = −
∑

i

1

|r− ri|
= −

∑

i

1

r

√

1 +
(

ri
r

)2 − 2
(

ri
r

)

cosψi

(3.19)

where ψi is the angle between ri and r. Expanding this in a Taylor series and retaining

terms upto order (ri/r)
2,

Vtot = −
∑

i

1

r
+

1

2r

∑

i

(

ri
r

)2 [

1 − 3 cos2 ψi
]

(3.20)

The second term in the above expression is the quadrupole moment term and for a generic

distribution of particles it is the leading order error term in the tree approximation as

we use it here. It is apparent from the quadrupole term that in the worst case scenario

all the particles lie along a straight line coincident with the direction of r. The error is

maximum in such a case.

We now estimate the error in the worst case scenario for two particles, i.e. when the

particles are at the diagonally opposite ends of a cell and the point at which the force is

being calculated is along the same diagonal. Distance between the particles is d
√

3, where
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d is the size (one side) of the cell under consideration. We have represented the situation

in a simple schematic form in fig.3.10. In the figure, we have two unit point masses at

positions x1 and x2 separated by a distance 2ǫ such that 2ǫ = d
√

3. We will calculate the

force at a point xp at a distance r from the centre of mass xcm of the system under the

assumption that ǫ ≪ r, rs. Using the expression for the potential in equation 3.20, we

obtain

δ

f(r)
=

3

4

(

2ǫ

r

)2

=
9

4

(

d

r

)2

(3.21)

where

f(r) =
2G

r2
(3.22)

is the the total force from the centre of mass at the point xp and δ is the error corresponding

to the quadrupole moment term in the potential. (d/r)2 in equation 3.21 is nothing but

the parameter θc. Therefore we have

δ

f(r)
=

9

4
θc

2 (3.23)

The fractional error due to the quadrupole moment term in the tree force is a simple

constant proportional to θc
2. If the two particles are separated along an edge of the cell

instead of the diagonal, the error is 3θ2
c/4.

We now repeat this estimate for the short range force. The short range potential at

any point r is

Vsh = −
∑

i

1

|r− ri|
erfc

(

|r − ri|
2rs

)

(3.24)

Again, retaining terms upto order (ri/r)
2, we have

Vsh = −
∑

i

1

r
erfc

(

r

2rs

)

+
1

2r
erfc

(

r

2rs

)

∑

i

(

ri
r

)2 [

1 − 3 cos2 ψi
]

− 1√
πr

exp

(

− r2

rs2

)

∑

i

(

ri
r

)2
[

(

r

rs

)3

cos2 ψi −
r

2rs

(

1 − 3 cos2 ψi
)

]

(3.25)

The first two terms in the above expression correspond to terms in the potential for the

total force. We consider, as before, the worst case scenario for the error in the short range
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force. The error is given by

δ

f(r)
=

1

4

(

2ǫ

r

)2
[

3 − 6√
π

∫ r/2rs

0
exp (−t2)dt+ 3

(

r

rs

)

exp

(

− r2

4r2
s

)]

+
1

4

(

2ǫ

r

)2
[

2√
π

(

r

rs

)3

exp

(

− r2

4r2
s

)

+
1

8
√
π

(

r

rs

)5

exp

(

− r2

4r2
s

)]

(3.26)

where f(r) is the total force and δ is the error corresponding to the quadrupole moment

term in the short range potential. It follows that

δ

f(r)
=

3θ2
c

4

[

erfc
(

r

2rs

)

+
(

r

rs

)

exp

(

− r2

4r2
s

)]

+
θ2
c

4

[

2√
π

(

r

rs

)3

exp

(

− r2

4r2
s

)

+
1

8
√
π

(

r

rs

)5

exp

(

− r2

4r2
s

)]

(3.27)

Therefore the quadrupole moment error term in the short range force is a complicated

function of r and not a simple constant proportional to θc
2 as it is for the total force. In

this derivation we have assumed that the separation between the two particles is much

smaller than rs. Also the error here has been calculated for the case when the two particles

are separated along an edge of the cell (and not along a diagonal) and these two points

and the point where the force is being calculated are co-linear. We have plotted the error

as a function of distance r in the upper panel of fig.3.11. We can see that the error in the

short range force is higher than that for the total force for the same value of θc.

The next task is to do a more realistic estimate of the error for a random distribution

of particles in a cell instead of considering pathological situations which give rise to large

errors. We take a cubical cell of size d and distribute point masses randomly in the cell.

Our aim is to calculate the error in the short range force in the tree approximation on

a single particle due to the group of particles in the cubical cell described above. To

calculate the error we need to compare the short range force in the tree approximation

(fscm) with the sum of short range forces due to all the particles in the cell (fs). We also

have the inverse square force in the tree approximation fcm. To quantify error in short

range force, we define ǫs as a measure of the error :

ǫs =
|fscm − fs|

|fcm|
(3.28)
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Figure 3.11: The fractional error in the tree approximation in the worst case is shown in the upper
panel as a function of distance r for the short range force (solid curve). This is the error up to leading
order in θc (see text). For reference, we have also plotted the corresponding error in the case of the
inverse square force (dot-dashed curve). This error is computed for a situation when the two particles are
separated along an edge of the cell and the two particles and the point where the force is being calculated
are along a line. The lower panel shows the fractional error in the short range force measured using
the method described in the text. Here the solid curve corresponds to θc = 0.3 and Np = 30 and the
dot-dashed curve is for θc = 0.5 and Np = 30. Error bars mark 1σ variations about the average error
measured for 100 different distributions of particles.
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Lower panel of fig.3.11 shows the fractional error ǫs in the short range force as a function

of distance r. The error is constant at small scales, increases around the scales where the

contribution of short range force is decreasing rapidly, then plummets to very small values

at larger scales as the short range force itself becomes very small. The range of scales

where the error is large are those where the short range force contributes a significant

fraction to the total force and its variation with distance is significantly different from the

inverse square force. In the figure, the error is plotted for two values of θc. It is lower for

smaller θc : error for θc = 0.3 is a nearly a factor of three smaller than that for θc = 0.5.

Here the error has been averaged over 100 different distributions of Np = 30 particles

in the cell. The error is smaller for larger number of particles as chances of an extreme

distribution of particles become smaller. Even for Np = 10, the error is considerably

smaller than the extreme collinear case discussed above. The error for θc = 0.5 and

Np = 30 is about 2% - slightly larger than the maximum error due to the long range force

(1.4% for rs = L). Errors for θc = 0.3 are smaller and closer to the errors in the long

range force. However, we should add that these are errors due to particles in a single cell.

3.2.3 Errors in the TreePM Force

We turn to the question of errors in the TreePM force calculated by adding the short

range and the long range forces. Errors are calculated with respect to a reference force

computed with the following configuration of the TreePM code. We chose θc = 0.01;

hence the errors in short range force are negligible as these errors decrease in proportion

to θ2
c . We take rs = 4.0 and the error in the long range force is thus below 0.1% if

we extrapolate the maximum dispersion in the long range force. With this setup, we can

safely assume that the error in the reference force (as compared to the inverse square force

with periodic boundary conditions that we should use) is below 0.1% at all scales and

this is sufficient for studying errors in the TreePM force calculated using more pragmatic

values of rs and θc where we aim to keep errors below the 1% level. We calculate errors

for two distributions of particles, one a random distribution of particles with uniform

density (an unclustered distribution) and the other a clustered distribution generated by
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an N-Body simulation. We plot the cumulative distribution for fractional error; errors are

calculated for 221 ≃ 2 × 106 particles.

We present the variation of errors with rcut in fig.3.12. rcut is the radius within which

we sum the short range force around each particle. We need to sum out to a distance

where the contribution of the short range force to the inverse square force drops to an

ignorable fraction. From fig.3.2, we know that the short range force is less than 1%

of the inverse square force at 5rs, so we expect that rcut should be comparable to this

value. For this figure we used rs = L and θc = 0.5. We find that for the unclustered

distribution, the distribution of errors is very different for rcut = 3rs as compared to

rcut ≥ 4rs, whereas for all rcut ≥ 4rs the distribution of errors is very similar. This can

result if particles beyond 4rs are not contributing to the force. This is to be expected in

a uniform distribution of particles where force due to local fluctuations dominates. The

distribution of errors for the clustered distribution is shown in the lower panel of fig.3.12.

For the clustered distribution, particles at larger distances contribute significantly to the

force on each particle. As this contribution increases, the force from r > 4rs becomes

more relevant. The error distribution for the clustered distribution shows some difference

between rcut = 4rs and rcut ≥ 5rs. From these figures we conclude that rcut = 5rs is a

safe choice, but rcut = 4rs may suffice for most situations.

Fig.3.13 shows the distribution of errors for different values of θc. As before, we

have shown results for the unclustered distribution in the upper panel and the clustered

distribution in the lower panel. We used rs = L and rcut = 6rs for these plots. There is

a marked difference in the errors for different values of θc in the case of the unclustered

distribution. Error decreases with θc and then saturates as we get to smaller values of

θc. The situation is different for the clustered distribution as errors for different values of

θc are very similar. This suggests that the errors are dominated by the long range force

calculation for a clustered distribution. For an unclustered distribution,the total force on

each particle is small, whereas the force due to a cell with many particles is large and many

large contributions cancel out to give a small net force. Numerical errors in adding and
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Figure 3.12: The distribution of fractional error in the TreePM force is shown here for two distributions
of particles. The upper panel shows cumulative errors for a uniform distribution of particles for different
choices of rcut. The lower panel shows the same for a clustered distribution of particles. We used rs = L
and θc = 0.5 for these figures. The solid curve corresponds to rcut = 6rs, the dashed curve to rcut = 5rs

and the dot-dashed and dotted curves correspond to rcut = 4rs and 3rs respectively. The error is very
large for both particle distributions for rcut = 3rs. The error for all rcut ≥ 4rs is essentially the same.
There is some difference in the error for rcut = 4rs and rcut ≥ 5rs for the clustered distribution as
anisotropies in the particle distribution start to make the force due to particles at these distances more
and more significant.
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Figure 3.13: The distribution of fractional error in the TreePM force is shown for different values of θc.
The upper panel shows these for a uniform distribution of particles and the lower panel shows the same
for a clustered distribution of particles. We used rs = L and rcut = 6rs for these figures. A full line, a
dashed line and a dot-dashed line correspond to θc = 0.3, 0.5 and θc = 0.7 respectively in both panels.
The order of curves in both the panels is as expected - error is smaller for smaller θc. The difference in
errors for different values of θc reduces with increasing clustering.
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subtracting large numbers seem to dominate errors in case of the uniform distribution.

Contribution of cells is large for larger θc; hence we get a significant variation with θc for

the unclustered distribution.

Lastly, we look at the variation in errors with rs. Fig.3.14 shows the distribution of

errors for different values of rs. We fixed the values of the other parameters to rcut = 6rs

and θc = 0.5. The upper panel of the figure is for the unclustered distribution and the

lower panel is for a clustered distribution of particles. Errors for the clustered distribution

increase monotonically as rs is decreased as expected from our analysis of errors in the

long range force. The fractional error in the TreePM force for 99% of the particles for

rs = L is less than 0.8%. The variation of errors with rs for the unclustered distribution

is not monotonic. Errors decrease till rs increases to unity and then increase again. This

happens because the issue of the small force on each particle for a uniform distribution

again comes into play. For larger rs, the force due to individual cells is large and the

numerical error in adding all the large contributions to get a small net force is also large.

The fractional error in the TreePM force for 99% of the particles for rs = L is less than

1.5%; thus the variation in error from an unclustered to a clustered situation is small

compared to that in tree codes. From this figure, we conclude that rs = L is the optimum

choice for the TreePM code.

3.3 CPU Time Requirements

In this section we list the CPU time required for one timestep of the TreePM code for

a simulation with 211 particles. We also study the variation of the CPU time with the

parameters of the TreePM method. The computer on which these timings were obtained

is powered by a 1.6GHz Pentium 4 CPU. Programs were compiled using the Intel Fortran

compiler (version 5.0) and double precision variables were used throughout. Programs

are written in Fortran 90.

We used rs = L, θc = 0.5 and rcut = 5rs. In this case one timestep takes 740 sec-
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Figure 3.14: This figure shows the variation of errors with rs. The upper panel shows the fractional
error in the TreePM force for a uniform distribution of particles and the lower panel shows the same for a
clustered distribution of particles. We used θc = 0.5 and rcut = 6rs for these figures. Different line styles
are used for different values of rs. The solid curve is for rs = 0.5L, the dashed curve for rs = 0.75L, the
dot-dashed curve for rs = L, the dotted curve for rs = 1.5L and the dot-dot-dashed curve for rs = 2L.
The error decreases monotonically with increasing rs for the clustered distribution. The behaviour is
different for the unclustered distribution where the error decreases at first, but then increases again.
Refer to the text for an explanation.
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onds. Time taken for building the tree, calculating the long range force, calculating the

short range force and moving particles are, for one timestep, equal to 6.38 seconds, 26.70

seconds, 711.51 seconds and 0.25 seconds respectively. This implies that the time taken

for each particle per step is 0.35ms. These numbers are for an unclustered (uniform)

distribution of 1283 particles.

The time required for one timestep of the TreePM code varies with the choice of

the values of the parameters rcut, rs and θc. We expect the time taken to increase with

increasing rs and rcut and decrease with increasing θc. The behaviour for these cases is

shown in fig.3.15. It is seen that the time taken falls sharply as we increase θc, whereas

errors are insensitive to the choice as long as θc ≤ 0.5. Therefore it makes sense to use

θc = 0.5. Time taken rises sharply with increasing rcut. Again, by comparing with the

variation of errors, we recommend rcut ≈ 4.5rs. Lastly, the time taken increases rapidly

as we increase rs. We recommend rs = L as the error is minimum for this choice for the

unclustered distribution.

3.4 Scale Invariant Evolution of Power Law Spectra

In Chapter 2 we have seen that a powerful test for any N-Body method is the requirement

that the evolution of clustering of power law models be scale-invariant. We have tested

the TreePM code for power law models. Fig.3.16 shows ξ̄ as a function of r/rnl(t) for

several epochs. Here rnl(t) is the scale which is going non-linear at time t and it varies

in proportion with a2/(n+3) in the Einstein-deSitter model. n is the index of the power

spectrum. We have used n = −1 for the upper panel and n = 1 for the lower panel.

We have plotted ξ̄ at scales more than four times larger than the artificial softening

length used in the simulation. It is obvious that the evolution is scale invariant for

both the spectra. This implies that we can safely probe the highly non-linear regime in

gravitational clustering with this code.
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Figure 3.15: The variation of CPU time required per timestep is shown as a function of the values of
the parameters in the TreePM code. The thick line shows the variation in CPU time with θc/0.5. Points,
from left to right, along this curve are for θc = 0.1, 0.2, 0.3, 0.4 and 0.5. Values of the other parameters
were fixed to rs = L and rcut = 6rs. The dashed line shows variation with respect to rs/L at rcut = 6rs

and θc = 0.5. The dot-dashed line shows variation with rcut/5rs at θc = 0.5 and rs = L.
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Figure 3.16: This figure shows ξ̄ as a function of r/rnl(t) for several epochs. Here rnl(t) is the scale
which is going non-linear at time t and it varies in proportion with a2/(n+3) in the Einstein-deSitter
model. n is the index of the power spectrum. We have used n = −1 for the upper panel and n = 1 for
the lower panel. We have plotted ξ̄ at scales more than four times larger than the artificial softening
length used in the simulation.
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3.5 Comparison with P 3M and AP 3M Methods

The TreePM code retains the accuracy of the tree code while speeding up the force

calculation by a factor of 4.5 or more. A code that provides comparable performance is

the P3M code (Efstathiou et al., 1985; Couchman, 1991). However, there are two main

differences between the P3M and the TreePM codes. One is that most P3M codes use

the natural cutoff provided by the grid for the long range force. This implies that the

long range force falls very slowly at small scales. Thus anisotropies due to the mesh

lead to anisotropies in force at scales comparable to the grid scale. In contrast, the

TreePM method uses Ewald’s method for effecting the separation between the long and

the short range forces and anisotropies at the grid scale are reduced considerably as shown

in §3.1 of this chapter. The second difference between the P3M code and the TreePM

code is that the small scale force is added for each pair of particles with separation

smaller than some rcut. This process is of order O
[

Npnr
3
cut

(

1 + ξ̄ (rcut)
)]

, where Np

is the number of particles in the simulation, n is the number density of particles and

ξ̄(rcut) = 3J3(rcut)/r
3
cut. At early times this reduces to O(Nnr3

cut), but at late times, when

the density field has become highly non-linear [ξ̄(rcut) ≫ 1], it becomes O
[

Nnr3
cutξ̄ (rcut)

]

.

Thus, as the density field becomes more and more non-linear, the number of operations

required for computing the short range force increases rapidly. The number of operations

required for adding the short range correction using the tree method varies much more

slowly being of O
[

N log
(

nr3
cut

(

1 + ξ̄ (rcut)
))]

. The linear and the non-linear limits of

this expression are O [N log (nr3
cut)] and O

[

N log
(

nr3
cutξ̄ (rcut)

)]

respectively. Thus the

variation in the number of operations with increase in clustering is much less for a TreePM

code compared to a P3M code. The problem is not as severe for the Adaptive P3M code

(Couchman, 1991), but it still persists. Therefore the TreePM code has a significant

advantage over the P3M and AP3M codes for simulations of models where ξ̄(rcut) is very

large (Bagla, 2002). In turn, P3M codes have one significant advantage over the TreePM

code as these codes require much less memory.
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3.6 Discussion and Summary

In this chapter, we have presented a detailed study of performance characteristics of the

TreePM method. We have analysed different sources of error and developed workarounds

for the main sources of error. We have shown that the choice of filter for splitting the

inverse square force into short and long range components suggested in Bagla (2002) is

the best among options studied here. We have also shown that the error in the long range

component of the force contributes very little to the total error in force. Errors introduced

by the tree approximation for the short range force are different from those for the inverse

square force and these errors dominate the total error in force. We have calculated the

distribution of errors in force for clustered and unclustered particle distributions. The

analysis of errors in realistic situations shows that the TreePM method performs well. We

have also tested the code by simulating a few power law models and checking for scale

invariance.

This method compares favourably with other comparable methods such as implemen-

tations of the tree code like GADGET (Springel, Yoshida and White, 2001) and hybrid

methods such as the TPM (Xu, 1995; Bode, Ostriker and Xu, 2000). From the numbers

available in these papers, we find that the errors for the recommended configuration of

the TreePM method are comparable with those in GADGET and lower than those in the

TPM method. In terms of CPU time taken per step per particle, we again find that the

numbers are comparable. Of course, it is not possible to make a detailed comparison of

this quantity as the whole approach is different, e.g. we do not use multiple timesteps

whereas GADGET relies heavily on these to optimise on speed. On the other hand, GAD-

GET and TreePM have a uniform force resolution, whereas TPM does not and hence the

time taken is likely to vary more with the amplitude of clustering for the TPM code as

compared to the other two.

In summary, we can state that the TreePM method is a competitive method for doing

cosmological N-Body simulations. The TreePM method, with only three well-defined
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parameters, has a cleaner mathematical model compared with other methods. Explicit

use of the three parameters gives users control over errors and CPU time requirements.
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Chapter 4

A Parallel TreePM Code

An inherent parallelism in all N-Body codes is that forces on particles can be calculated

concurrently. Hybrid nature of the TreePM method brings in multiple parallelisms and

we have to adopt a somewhat involved scheme for parallelisation. The tree method is

used in the TreePM code to calculate the short range force. Computation of the short

range force is the dominant component in terms of the fraction of CPU time used. We

make use of the scheme commonly used for parallelising a tree code to compute the short

range force. The long range force is computed concurrently on a processor not involved

in the computation of the short range force. We use the Message Passing Interface (MPI)

(Snir et al., 1999) for parallel computing. We discuss our parallel implementation of the

TreePM method in the following sections of this chapter1.

4.1 Scheme of Parallelisation

In a Barnes and Hut (1986) tree code, the simulation volume is divided into cells and

only a small subset of the details of the particle distribution in distant cells is needed

for computing the force. Thus it is natural to divide the simulation volume into domains

with equal computational load and the forces on particles in a given domain can be

1This chapter is based on A Parallel Implementation of the TreePM Code (S. Ray and J.S. Bagla),
astro-ph/0405220.
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computed by one processor. We compute the short range force in the TreePM code

by this method. In order to form domains, the simulation volume is bisected recursively.

Bisections may or may not be along orthogonal directions and each bisection is carried out

in such a way that the computational load is equal on both sides of the cut (Salmon, 1991;

Dubinski, 1996; Springel, Yoshida and White, 2001; Dubinski, 2004). After m bisections,

the simulation volume is divided into 2m domains - all with equal computational load.

These are now assigned to different processors (we call these processors the grid nodes) and

the calculation of force can be carried out concurrently on these processors. A separate

communicator is set up for processors involved in the short range force calculation, i.e. the

grid nodes. This communicator is given the Cartesian grid topology (Snir et al., 1999)

for easy bookkeeping and the grid nodes consequently get labelled by “coordinates”.

Fig.4.1 schematically represents the process of domain docomposition and assignment of

coordinates to processors within a Cartesian grid. For ease of presentation we have used

a two-dimensional example here. In the figure, the two panels at the top demonstrate

recursive bisections of the simulation volume along the x-axis. The lower left panel in the

figure shows a further bisection of each of the domains so created along an orthogonal

direction, i.e. y. We end up with 23 = 8 domains with equal computational load, each of

which is assigned to a grid node with a unique set of Cartesian coordinates, represented

by a pair of numbers in brackets in the lower right panel of the figure. We call the node

with coordinates (0, 0) the origin node.

The process of domain decomposition adds some overhead, but it is small compared

to the gain due to parallelisation, i.e. to the time saved by using multiple processors

for force calculation. Of course, this overhead increases as we increase the number of

processors for domain decomposition. For long range forces like gravity, each processor

needs information from all the other processors and hence the number of communications

required is significant. This can be a serious impediment on distributed memory machines

with a large number of processors. The problem is less serious for the TreePM code as

the short range force calculation requires communications with a much smaller number

of processors.
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Figure 4.1: A schematic representation of domain decomposition in two dimensions. The numbers in
brackets represent the coordinates of processors on the Cartesian grid created by the Message Passing
Interface (MPI).
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In the TreePM method, the force computation is divided into two parts, the long range

and the short range forces, and these two components can be evaluated independently.

This is a parallelism inherent in the TreePM algorithm. The method described above

serves to compute the short range force, exploiting another implicit parallelism. We need

to use the two parallelisms in the algorithm for a successful implementation of the parallel

TreePM code. However the presence of two independent parallelisms makes the task of

load balancing somewhat non-trivial and gives rise to complexities discussed below.

Only a small fraction of the CPU time is used for computing the long range force in

the sequential version of the code. Thus the number of processors used for the long range

force calculation can be much smaller than the total number of processors being used. In

fact, only one processor (say, the PM node) for the long range force calculation is sufficient

for most cases. An obvious problem that arises is that load balancing is achieved only for

a specific number of processors when the time taken for the long range and short range

forces coincides and load balancing is less than perfect for a smaller number of processors.

If the number of processors used for computing the short range force is smaller than a

critical number then the long range force calculation will finish well before the short range

force calculation. Given that the long range force computation takes much less time as

compared to the calculation of the short range force, only the processor(s) involved in the

long range force calculation are made to wait in this situation. As this is much smaller

than the number of processors used for the short range force calculation, load imbalance

does not degrade efficiency significantly. If, however, the number of processors is larger

than the number required for optimum load balancing, then the processors doing the short

range force calculation will have to wait. The situation can be remedied by spreading the

task of long range force calculation over more than one processor at the cost of adding to

the total number of processors (Nproc)
2.

We now proceed to describe the detailed algorithm that we have adopted and sum-

marise various options that we have considered at each step.

2We will use Nproc to denote the total number of processors and Nshort for the number of processors
used to compute the short range force.
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4.1.1 Short Range Force

We use domain decomposition for computing the short range force and recursive bisection

to create domains with equal number of particles (Salmon, 1991; Dubinski, 1996). As

long as the number of particles in each domain is sufficiently large, we find that dividing

the simulation volume into domains with equal number of particles is sufficient for load

balancing and we need not explicitly create domains with equal computational load.

The short range force needs to be taken into account over a radius rcut around every

particle. Therefore each domain needs information about particles upto a distance rcut

from its boundary walls. Communicating information about particles in neighbouring

domains for completing the calculation of the short range force is a tricky problem. The

direct approach, which also ensures load balancing, is to request the processors corre-

sponding to neighbouring domains for the relevant information (Salmon, 1991; Dubinski,

1996). A variant of this method is to send positions of particles near the boundary of do-

mains and seek the partial force information, i.e. the processor for a neighbouring domain

receives a list of particles and calculates the short range force on these particles due to

particles in its domain and returns the partial force. The problem with these approaches

is that communication overheads are significant. For a three-dimensional simulation,

where each domain is larger than rcut, communications are restricted to nearest neigh-

bours amongst domains. The number of nearest neighbours is never greater than 26, but

two-point communications with 26 processors per processor can add a significant amount

of overhead. There is an overhead in starting communications as even high performance

networks have a latency of 5µs or more and, of course, some time is taken for transmission

of data as well. It is not possible to manage several concurrent communications and hence

all the exchanges of information between particles have to be staggered. There is also

a computational overhead as lists of relevant particles at tree nodes are generated and

information from all the neighbours is put together, or partial force is calculated in the

alternative approach mentioned above. However, this is the only choice available when

the number of processors is large or when the memory available per processor is limited
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and a single processor cannot handle the entire information about the positions of all

the particles. When this is not the case, pairwise communications are not the optimal

solution. Some alternatives that we have tried are :

1. List non-local particles along with recursive bisection. Thus the list of non-local

particles needed for calculating the short range force is made at the same time as

domain decomposition.

2. Send positions of all particles to all processors; each processor identifies the list of

non-local particles that are needed.

The first option adds to the time before the calculation of the short range force can

commence. It nearly doubles the time take for domain decomposition, though there is

no additional overhead beyond this step. We find that the second option listed here is

the faster of the two, but adds large overheads in terms of memory requirements for each

processor because it requires that we be able to store all the particle positions in each

processor. As long as memory is not a limitation, this is the best option and we choose

this for our implementation. The overhead that can be attributed to different options is

subject to the nature of the interconnect used.

In our scheme, each grid node shortlists non-local particles by identifying all parti-

cles within a distance rcut of its domain boundaries. This is demonstrated by a simple

schematic diagram in fig.4.2. Here the simulation volume is taken to be a square for

convenience. The domain under consideration is shaded in dark grey, while the region

surrounding it, shaded in light grey, is the area to be scanned to identify non-local par-

ticles that contribute to the short range force calculation for particles in the domain.

The width of the region containing non-local particles is rcut. The edges of the region in

light grey, in principle, ought to arcs of circles, but we have used sharp edges for ease of

computation.

While constructing the tree on each node, we use the full simulation volume as the
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r
cut

Figure 4.2: This figure shows a simulation area (two dimensions). The area is subdivided into domains.
For a particular domain (shaded in dark grey), the area to be scanned, to identify the non-local particles
that will contribute to the short range force calculation in the domain, is shaded in light grey.
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largest cell. Periodic boundary conditions are applied for calculating the force and also

to wrap particle positions after every timestep.

4.1.2 Long Range Force

Long range force is calculated in Fourier space using the PM method but using a dif-

ferent kernel (see eqn.3.1). We use FFTW (http://www.fftw.org) for computing Fourier

transforms in this calculation. The force is computed on a single processor and is then

communicated to all the other nodes using a broadcast (Snir et al., 1999). We achieve

good load balancing between calculation of the short range and the long range forces

when the short range force computation is done on 64 processors for a simulation with

1283 particles and the long range force is calculated on a single processor. In case we wish

to use a larger number of CPUs, we will have to use multiple processors for the long range

force calculation as well in order to get load balancing. For testing our code, we have

used the 84-processor Linux cluster Kabir (http://cluster.mri.ernet.in) and hence we can

use atmost 64 processors for the short range force calculation.

4.1.3 Communications

At the start of each timestep, particle positions are broadcast by the origin node (coordi-

nates x = 0, y = 0 and z = 0 on the Cartesian grid) to all the processors on the Cartesian

grid as well as to the processor which computes the long range force. The origin node

then initiates the process of domain decomposition and the particles are grouped into

smaller and smaller units until they are passed on to processors where the short range

force is to be computed. As domain decomposition proceeds along a tree structure, sev-

eral processors can contribute concurrently to the process. At the outset, the origin node

performs a bisection of the simulation volume along the x-axis. Several communicators

are constructed in order to optimise communications for concurrent message passing be-

tween distinct subsets of nodes along independent channels of communication. In this,
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the communication overhead is reduced significantly. We’ll describe the communicators

in some detail in the following paragraphs.

We first define Comm x which serves as a communicator dedicated only to commu-

nications of the origin node with nodes which have coordinates y = 0, z = 0. During the

process of bisection, the origin node implicitly assigns nodes, including itself, in Comm x

to the domains it creates within the simulation volume in the first step of domain de-

composition. All nodes which are members of Comm x receive the entire set of particle

positions together with the corresponding velocities as well as coordinates of the points

of bisection along the x-axis of the simulation volume from the origin via a series of

MPI Broadcasts. These nodes then create their own local arrays of particle positions and

velocities using the corresponding bisection point information. The remaining portions of

the original position and velocity arrays are discarded.

At the next step, each node which is a member of Comm x creates a communicator

Comm y(xi) which channelises communication with all nodes which have y-coordinates

which range over the entire set of possible y values on the Cartesian grid as well as z = 0

and x = xi, where xi is its own x-coordinate. Each of these nodes performs a bisection

along the y-axis followed by a series of MPI Broadcasts (similar to that by the origin

node) to communicate its local arrays of particle positions and velocities as well as the

coordinates of the points of bisection along the y-axis to all the nodes in Comm y. Nodes

in Comm y similarly create their own local arrays of particle positions and velocities using

the corresponding bisection point information, discarding the remaining portions of the

available position and velocity arrays.

Finally, each node in Comm y creates a communicator Comm z(xi,yj) which facili-

tates communication with all nodes which have z-coordinates ranging over the entire set

of possible z values on the Cartesian grid as well as x = xi and y = yj, where xi and yj

are its own x and y coordinates respectively. This is followed by a bisection along the

z-axis and finally each node in Comm z(xi,yj) has its own local arrays for position and

velocity.
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At the end of the process of domain decomposition, every node on the Cartesian grid

therefore has information about particle positions and velocities in its own local domain.

In addition, it has the full position array of particles, which information it uses to shortlist

particles that are not local to its domain, but are needed to complete the short range force

calculation. This is actually done by identifying the set of particles within a perpendicular

distance rcut of the boundary of the domain that is local to the node. The complete array

for particle positions is discarded as soon as non-local particles needed to complete the

short range force calculation are shortlisted. It now remains the task of the node to

independently compute the tree part of the force on all particles in its domain as well as

to move the same particles using the equation of motion.

The PM node broadcasts the entire force array at the end of its job. All particles

in a domain carry identity tags so that we can trace their trajectories in the simulation.

Using the identity tags, each grid node retains the force only for particles within the

local domain, adds this to the short range force computed locally, moves the particles and

recomputes their velocities. The irrelevant part of the array for the long range force is

discarded.

Particle positions and velocities are finally sent back and the origin node gathers the

arrays. MPI Reduce is used within the Cartesian grid to communicate particle identities

to the origin node.

4.2 A Flowchart for the Parallel Algorithm

The parallel algorithm in detail is as follows :

Initialisation :

* PM node reads/generates initial positions, velocities and masses

of all particles.
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* PM node BROADCASTs particle positions.

* PM node SENDs particle velocities to the origin node.

* Cartesian grid of processors is set up for domain decomposition.

Loop :

* Origin node BROADCASTs full position array to all grid nodes

and PM node.

* Origin node initiates domain decomposition.

* All grid nodes participate in domain decomposition and at the

end of domain decomposition have own local position and velocity

arrays.

* All grid nodes shortlist particles not local to their own domain,

but are needed to complete the short range force calculation.

* Grid nodes form tree structure for local particles as well as

non-local particles.

* Grid nodes compute short range force for local particles.

* PM node computes long range force for all particles concurrently.

* Grid nodes receive long range force via BROADCAST by PM node.

* Grid nodes compute total force and move local particles.

* Origin node GATHERs particle positions and velocities from all

grid nodes.

End Loop

In a single timestep of execution of the parallel TreePM code, the following contribute

significantly to the CPU time :

• Short range force calculation at each grid node.

• Long range force calculation at the PM node.
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• Broadcast of long range force to every grid node.

• Domain decomposition.

• Broadcast of particle positions to every node.

• Shortlisting of non-local particles required for short range force calculation at every

grid node.

• Collecting particle positions, velocities and identity tags at the origin node.

The time taken for the long range force calculation is independent of the number of

processors used for the short range force computation. All the other tasks listed above

vary with the number of processors for a simulation with a given number of particles. The

time taken for broadcast of the long range force and that for broadcast of particle positions

to every node are expected to be similar, i.e. time taken by these should vary in the same

manner with the number of processors. The time taken for these increases rapidly with

the number of processors, but this remains the least important communication overhead.

In fig.4.3, we have plotted time taken in seconds for the cases itemised above as a function

of Nshort for a simulation with 1283 particles. The work for domain decomposition can be

done concurrently by many processors in later bisections and the computational overhead

is dominated by the first few bisections. So the time taken for domain decomposition varies

slowly with Nshort which means that the overhead due to this does not change significantly

as we vary the number of processors. The time taken for the short range force calculation

decreases rapidly as we increase the number of processors. This variation is faster than

1/Nshort and can be understood as follows. Each processor handles a smaller and smaller

number of particles and their velocities as the load is divided amongst larger and larger

number of domains and this leads to an improved cache performance. The dot-dot-dashed

line shows the time taken for short range force calculation, domain decomposition and

shortlisting of non-local particles. This is the total time taken by any grid node for

computing in each step of the simulation. The dashed line shows the time taken for the

long range force calculation. Comparing these two, we see that we get good load balancing
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for the maximum number of processors used, i.e Nshort = 64. For a smaller number of

processors, the long range force calculation is finished earlier and the processor assigned

to this job stays idle for some time.

4.3 Performance of the Parallel Code

Performance of parallel programs is measured in terms of speedup, where speedup is

defined as the time taken to run the program on a single processor divided by the time

taken to run the same program on Nproc processors.

SNproc
=

Tseq
TNproc

(4.1)

For a fully parallelisable problem, this should scale as Nproc. However, in problems where

load balancing is not perfect and inter-process communication or computational overhead

due to parallelisation is significant, speedup is less than Nproc. Our aim is to optimise

our algorithm to make speedup as close to Nproc as possible, especially for a reasonably

large value of Nproc. The speedup efficiency is the speedup divided by Nproc, i.e. ENproc
≡

(SNproc
/Nproc) × 100%.

If we use a single processor for the long range force calculation while changing Nshort,

the number of processors computing the short range force, then speedup is not linear in

Nproc. For small Nshort, the long range force calculation takes much less time compared

to the short range force calculation and the efficiency of parallelisation is low due to poor

load balancing. As Nshort is increased, efficiency of parallelisation improves till load bal-

ancing is achieved. In the regime where Nshort is smaller than the optimum value for

load balancing, the code speeds up faster than linear. If Nshort is larger than the number

required for load balancing with the long range force calculation, the performance does

not improve any further. In this regime, communication overheads and/or long range

force calculation take(s) up more time than short range force calculation and there is

no significant change in speedup with increasing Nshort. The optimum value of Nshort

depends on the size of the simulation and the details of how communications are organ-
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Figure 4.3: This figure shows the time taken in seconds for short range force calculation (full line), long
range force calculation (dashed line), domain decomposition (dot-dashed line), shortlisting of non-local
particles (dotted line) and communicating the long range force (thin dotted line) as a function of the
number of processors for short range force calculation in one timestep of a parallel TreePM simulation with
1283 particles. The dot-dot-dashed line is the sum of the times taken for short range force calculation,
domain decomposition and shortlisting of non-local particles.
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Figure 4.4: The speedup is plotted as a function of Nproc for 1283 simulations (circles). Features
expected from the analysis of the algorithm are clearly seen here with the efficiency dropping off at both
small and large Nproc. At large Nproc, the speedup begins to saturate and for small Nproc the speedup
decreases very rapidly.
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Figure 4.5: The time taken per step per particle is plotted as a function of Nshort for simulations with
1283 (circles) and 2563 (squares) particles. We have used Nlong = 1; thus Nproc = Nshort + 1. A 2563

simulation requires about 6.5µs per particle per timestep for Nproc = 65.
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ised. These features can be seen in fig.4.4 where the speedup is plotted as a function

of Nproc for 1283 simulations. The speedup is almost linear beyond Nproc = 5 for sim-

ulations with 1283 particles and it starts dropping beyond Nproc = 33 and the speedup

efficiency falls below unity. Data for this figure was obtained on the Linux cluster Kabir

(http://cluster.mri.ernet.in). Each node of Kabir is a dual processor Xeon server (2.4GHz,

FSB 533MHz) with 2GB or more RAM. These nodes are connected in 2D torus topology

with Dolphin-SCI (scalable coherent interconnect) network (http://www.dolphinics.com).

Scali’s ScaMPI (http://www.scali.com) is used for parallel computing with the Intel For-

tran 90 compiler (http://www.intel.org). We obtain a speedup of 31.4 on 33 processors

and 39 on 65 processors for the 1283 simulations. Speedup is greater than the number

of processors for Nproc = 9 and 17. This can be explained in terms of improved cache

performance for smaller data sizes and also due to improvement in load balancing between

the short range and the long range force computations.

Performance of the parallel code is presented in fig.4.5 where we have plotted time

taken per step per particle as a function of Nproc. Notice that for Nproc = 65, the time

taken per step per particle is only 6.5µs for 2563 simulations. Thus we can do a simulation

of 4000 timesteps in five days.

We can make further improvements to our method by using more processors for the

long range force calculation and by using a larger box for computing the long range force

as this will reduce the communication overhead. These changes, however, will be needed

for a larger number of processors that we have access to and are not very relevant for

parallelisation of the code on a small Linux cluster.

4.4 Discussion

In this chapter, we have presented an algorithm for parallelising the TreePM code on a

Beowulf cluster. We have used both functional and domain decompositions. Functional

decomposition has been used to separate the computation of long range and short range
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forces as well as the task of coordinating communications between different components.

Short range force calculation is time consuming and is shown to benefit from the use

of domain decomposition. We have tested the code on our Linux cluster by comparing

the final positions and velocities of particles in some test cases with the output of the

sequential code. The error profile of this code is identical to that for the sequential

TreePM code (Bagla and Ray, 2003).

We have optimised the CPU time required at the cost of memory requirements. The

maximum memory requirement per node is about 80 bytes per particle for double pre-

cision variables. We require up to 160 MB per node for the 1283 simulations and 1.25

GB per node for the 2563 simulations. These numbers represent the maximum memory

requirements and for much of the time the memory requirement is much smaller than

this. Memory requirements can be reduced by about 25% by reorganising the code. Such

changes are useful mainly for a larger number of processors than used here.

For the 1283 simulations we have obtained a speedup of 31.4 on 33 processors and 39

on 65 processors. The time taken for one timestep per particle is 6.5µs for a 2563 particle

simulation on 65 processors. Thus a simulation that runs for 4000 timesteps will take 5

days on this cluster. These results are for a simulation with a global timestep and further

optimisations in terms of individual timesteps can be carried out.



Chapter 5

The TreePM Method for
Two-Dimensional Cosmological
Simulations

We know that structures such as galaxies and clusters of galaxies are very overdense com-

pared to the average density of the Universe and it is believed that these were formed

by the growth of small perturbations via gravitational instability (Peebles, 1980; Pea-

cock, 1998; Bernardeau et al., 2002; Padmanabhan, 2002a). We also know that equations

that describe the growth of density perturbations due to gravitational clustering (Pee-

bles, 1974, 1980) cannot be solved analytically when the overdensities are large and we

have to rely on N-Body simulations for detailed predictions. Limited information about

non-linear gravitational clustering can be obtained by using approximations or ansatze,

e.g. stable clustering (Peebles, 1980). Stable clustering allows us to relate the initial spec-

trum of fluctuations with the final spectrum of fluctuations (Davis and Peebles, 1977).

Generic features in the evolution of gravitational clustering can also be understood us-

ing scaling relations. Scaling relations are a detailed prescription for relating the initial

and final spectra of fluctuations (Hamilton et al., 1991; Nityananda and Padmanabhan,

1994; Peacock and Dodds, 1994; Jain, Mo and White, 1995; Peacock and Dodds, 1996;

Padmanabhan, 1996; Padmanabhan et al., 1996; Bagla and Padmanabhan, 1997b; Bagla,

Engineer and Padmanabhan, 1998; Smith et al., 2003). The motivation for studying non-



98
CHAPTER 5. THE TREEPM METHOD FOR TWO-DIMENSIONAL

COSMOLOGICAL SIMULATIONS

linear scaling relations is to understand the key phases in gravitational clustering and to

identify the relevant process in each phase (Padmanabhan, 1996). The existence of the

scaling relations also implies that gravitational clustering does not erase the memory of

initial conditions. Another useful and a more prosaic motivation for studying the scaling

relations is to be able to invert the observed galaxy clustering and recover the primordial

power spectrum (Hamilton et al., 1991). The scaling relations are valid for hierarchical

models where the initial conditions contain fluctuations at all scales and the amplitude of

fluctuations increases monotonically as we go from large scales to small scales.

Scaling relations indicate that there are three prominent regimes in the evolution

of gravitational clustering. When the amplitude of perturbations is small such that the

density contrast δ is very small (|δ| ≪ 1), mode coupling is not important and the

evolution closely follows the predictions of linear perturbation theory (Peebles, 1974). The

power spectrum and correlation function evolve without a change in shape in the linear

regime. As density contrast grows and becomes comparable to unity, motions induced by

gravitational collapse start to dominate over the expansion of the Universe. The quasi-

linear regime is dominated by infall onto density peaks and the correlation function grows

rapidly in this phase (Padmanabhan, 1996). Even later, gravitational collapse leads to

formation of structures in or close to dynamical equilibrium and further evolution of the

density contrast is dominated by the depletion of the average density of the Universe

due to expansion of the Universe as the density of collapsed structures remains almost

constant. This is the asymptotic or highly non-linear regime.

It is obvious that a large dynamic range is required in any N-Body simulation in

order to investigate the scaling relations over a range of scales such as would cover all

three regimes described above. It is difficult to achieve such a large dynamic range in

simultions in three dimensions, particularly for negative values of the index n of the initial

power spectrum. Fig.5.1 illustrates this fact. We have used the HKLM fitting function

(Hamilton et al., 1991) from Smith et al. (2003) for computing the dimensionless power

spectrum ∆2(k), where k is the wavenumber of a given Fourier mode. In the figure, we
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have plotted ∆2 at k = knyq as a function of index n. Here knyq is the Nyquist frequency

and n is the index of the initial power spectrum for scale-free models. For every n,

∆2(knyq) is plotted at an epoch such that ∆2(kf) ≃ 0.01, where kf = 2π/Nbox is the

fundamental mode for a simulation box of size Nbox. We have taken Nbox = 256. It is

obvious from the plot that for n = −2.0, one can barely reach the quasi-linear regime even

at the smallest scales accessible (corresponding to knyq) in a simulation if fluctuations are

to remain linear at the box scale (corresponding to kf) if we take a box of size 256.

By simulating a two-dimensional system a much higher dynamic range can be achieved

with similar computational resources (Beacom et al., 1991; Bagla, Engineer and Padman-

abhan, 1998; Munshi and Coles, 1998). For example, since 20482 ≈ 1603, the computa-

tional requirements are similar for a two-dimensional simulation with a boxsize of 2048

and a three-dimensional simulation with a boxsize of 160. This implies that we can achieve

a dynamic range in 2d which is ten times larger at the same computational cost. This

allows us to probe non-linearities over a larger range of scales in two dimensions as com-

pared to three dimensions. As long as one is interested in generic aspects of clustering

that are independent of dimension, studies in two dimensions have this advantage over

ones in three dimensions. Higher dynamic range is thus the basic motivation for study-

ing gravitational clustering in two dimensions. We describe the two-dimensional TreePM

code in this chapter1.

5.1 The Gravitational Force in Two Dimensions

When we go from three to two dimensions, we have, in principle, two different ways of

modelling the system (Bagla, Engineer and Padmanabhan, 1998) :

• We can consider perturbations restricted to a plane in a three-dimensional expand-

ing Universe. The force between particles varies as 1/r2 and we assume that all

1This chapter is based on TreePM Method for Two-Dimensional Cosmological Simulations (S. Ray),
astro-ph/0406009. Accepted for publication in JAA.
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Figure 5.1: The dimensionless power spectrum ∆2 at the Nyquist frequency knyq is plotted as a function
of the index n of power law models. ∆2(knyq) is plotted at an epoch such that ∆2(kf ) ≃ 0.01, where
kf = 2π/Nbox is the fundamental mode for a simulation box of size Nbox.
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perturbations and peculiar velocities are confined to a single plane at the initial

instant.

• We can study perturbations that do not depend on one of the three coordinates,

i.e. we start with a set of infinitely long straight “needles”, all pointing along one

axis. The force of interaction then falls as 1/r. Evolution keeps the needles pointed

in the same direction and we study the properties of clustering in an orthogonal

plane. Particles in the N-Body simulation represent the intersection of the needles

with this plane and the interaction can be described using the Poisson equation in

two dimensions.

In both of these approaches, the Universe is three-dimensional and the background is

expanding isotropically.

The study of two-dimensional perturbations in a three-dimensional expanding Uni-

verse is not of much use : to begin with, we do not gain the desirable dynamic range

in computation if we stick to three dimensions, even if perturbations are confined to a

plane, because the force between particles has to be still computed by the solution of

the Poisson equation in three dimensions. Also, the interaction of matter outside the

plane with these perturbations eventually makes it a three-dimensional problem (Bagla,

Engineer and Padmanabhan, 1998).

The second option is where the two-dimensional system is represented by the intersec-

tion of the needles with an orthogonal plane. The needles are the particles in the system

and the force between these particles is given by the solution of the Poisson equation in

two dimensions. Such a system is dichotomous with the background Universe expanding

isotropically. However, analytic results for the evolution of density profiles around peaks

in two dimensions have been derived for systems of this type (Filmore and Goldreich,

1984). Because scaling relations in the asymptotic regime depend on the kind of dy-

namical equilibrium that is reached in massive haloes (if an equilibrium is ever reached),

density profiles of massive haloes are related to the non-linear scaling relations and we
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therefore choose this second option (Bagla, Engineer and Padmanabhan, 1998; Munshi

and Coles, 1998).

In order to compute the force, we solve the Poisson equation for the perturbed part

of the gravitational potential in two dimensions, whereas the unperturbed background is

still the three-dimensional spherically symmetric Friedmann Universe. The perturbations

are described by the mass per unit length of the needles representing the particles and

the gravitational force due to such a particle situated at the origin has the form :

f(r) = −
[

Gm

r2

]

r (5.1)

Here G is the gravitational coupling constant and m is the mass (per unit length).

5.2 The Mathematical Model

In the TreePM method, we explicitly divide the potential and force into a long range

component and a short range component. The PM method is then used to compute

only the long range component and the tree method is used to calculate the short range

component. The gravitational potential (corresponding to the 1/r force) for our two-

dimensional system can be split into two parts in Fourier space in a manner similar to

that used in the three-dimensional TreePM method (Bagla, 2002) :

φk = −2πGρk
k2

(5.2)

= −2πGρk
k2

exp
(

−k2r2
s

)

− 2πGρk
k2

[

1 − exp
(

−k2r2
s

)]

= φlk + φsk

φlk = −2πGρk
k2

exp
(

−k2r2
s

)

(5.3)

φsk = −2πGρk
k2

[

1 − exp
(

−k2r2
s

)]

(5.4)

where φl and φs are the long range and the short range potentials respectively. rs is the

scale of transition from the long range to the short range force or vice versa.
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Expressions for the 2d long range and short range forces in real space are

f l(r) = −
[

1 − exp

(

− r2

4rs2

)]

Gm

r2
r

fs(r) = − exp

[

− r2

4rs2

]

Gm

r2
r (5.5)

These equations describe the mathematical model for the force in a 2d TreePM code. The

long range potential is computed in Fourier space using the PM method using eqn.5.3

instead of eqn.5.2. This potential is then used to compute the long range force. The short

range force is computed directly in real space using eqn.5.5. This is done using the tree

approximation. The short range force falls rapidly at scales r ≫ rs and hence we need to

take this into account only in a small region around each particle. The scale upto which

we add the small-scale force is rcut.

We have plotted the 2d long range and the short range forces (eqn.5.5) as a function

of r in fig.5.2 to show their dependence on scale. The short range force closely follows the

total force up to rs and then falls rapidly at larger scales. Its magnitude falls below 0.1%

of the total force by 5.25rs. Therefore, rcut can be safely chosen to be of the order of 5rs

or smaller. The long range force reaches a peak around 2.5rs. It makes up most of the

total force beyond 3rs. It falls rapidly below 2.5rs, becoming negligible below rs/2.

We soften the gravitational force at small scales in order to ensure collisionless evolu-

tion. Each particle is given a finite size to soften the force. To find the force due to such

a particle, we solve the Poisson equation in two dimensions with a source term given by

an extended mass distribution represented by

ρ(r) = mW (r, ǫ) (5.6)

Here W (r, ǫ) is the normalised spline kernel used in the SPH formalism (Monaghan, 1992),

with ǫ the smoothing length. Here it also represents the size of the particle. W (r, ǫ) has

the following form in two dimensions :

W (r, ǫ) =
(

40

7πǫ2

)



















1 − 6
(

r
ǫ

)2
+ 6

(

r
ǫ

)3
, 0 ≥ r

ǫ
≤ 0.5

2
(

1 − r
ǫ

)3
, 0.5 < r

ǫ
≤ 1.0

0 , r
ǫ
> 1.0

(5.7)
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Figure 5.2: This figure shows the 2d long range force, the short range force as well as the total force as
a function of scale. The 1/r force is shown by the solid line, the long range force by the dot-dashed line
and the short range force by the dashed line. We have taken rs = 1 here.
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Solving the Poisson equation and matching the potential and its first derivative (i.e. the

force) to obtain the constants of integration, we get the cubic spline softened potential :

φ(r) =















Gmr2

7ǫ2

[

20 − 30r2

ǫ2
+ 96r3

ǫ3

]

+ C2 + C1 log(r), 0 ≥ r
ǫ
≤ 0.5;

Gmr2

7ǫ2

[

40 − 160r
3ǫ

+ 30r2

ǫ2
− 32r3

5ǫ3

]

+ C4 + C3 log(r), 0.5 < r
ǫ
≤ 1.0;

C5 log(r) + C6,
r
ǫ
> 1.0

(5.8)

with the constants of integration C1, C2, C3, C4, C5 and C6 given by the following :

C1 = 0 = C6

C2 =
Gm

7

[

8 log(ǫ) − log
(

ǫ

2

)

− 827

60

]

C3 = −Gm
7

C4 =
Gm

7

[

8 log(ǫ) − 154

15

]

C5 = Gm

We obtain the force f as a gradient of the potential :

f(r) =















−
{

10 − 30r2

ǫ2
+ 96r3

5ǫ3

}

4Gm
7ǫ2

r , 0 ≥ r
ǫ
≤ 0.5;

−
{

80
ǫ2
− 160r

ǫ3
+ 120r2

ǫ4
− 32r3

ǫ5
− 1

r2

}

Gm
7

r , 0.5 < r
ǫ
≤ 1.0;

−Gm
r2

r , r
ǫ
> 1.0

(5.9)

5.3 Error Estimation

Errors in force for various components in the 3d TreePM method have been studied in

Chapter 3. The key features of the analysis carry over to the 2d TreePM method. Here

we briefly discuss errors in the 2d long range force, the 2d short range force and the 2d

TreePM force.

5.3.1 Error in the Long Range Force

The long range force, is computed by the Particle-Mesh method. In this scheme, the mesh

and the interpolating function are the main sources of anisotropy. We use the Cloud-in-

Cell (CIC) interpolating function (Hockney and Eastwood, 1988). To estimate errors in
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the long range force, we follow the method used in the error analysis for the 3d TreePM

method in Chapter 3 of this thesis. We place a particle at a random position in a mesh

cell and use our code to find the long range force at another random point. The force is

evaluated at a large number of such random points scattered within some distance from

the particle. This process is repeated for a number of times with a different position of

the particle. We use the force calculated in this manner to compute the average long

range force as a function of distance.

Fig.5.3 shows the expected long range force (solid curve), the average long range

force for a particle (dot-dashed curve) as well as the average long range force obtained

after removing the effect of the interpolating function (dashed curve). All three are

plotted as a function of distance r. The offset in the force due to the interpolating

function is removed by de-convolving the interpolating function (Bagla and Ray, 2003).

The scheme is identical to that followed for the 3d TreePM method (see §3 of Chapter

3). The fractional error (scaled by the total 1/r force) in the long range force with

deconvolution of the interpolating function is below 0.4% over the entire range of scales

under consideration. We use the long range force with deconvolution of the interpolating

function in our implementation of the 2d TreePM method.

5.3.2 Error in the Short Range Force

The short range force is calculated using the tree approximation (Barnes and Hut, 1986).

Here the entire mass in a distant cell is assumed to be concentrated at the centre of mass

of the cell. The error in force introduced by this approximation increases with θ : θ ≡ d
r
,

where d is the size of the cell and r is the distance from the point where the force is to

be calculated to the centre of mass of the cell. We would not like to use cells that are too

close or too large as that can lead to large errors. This is ensured by introducing the cell

acceptance criterion, i.e. by comparing θ with a threshold θc : θ ≤ θc. To estimate the

error due to the tree approximation, we compare the short range force due to particles in

a given cell in the tree approximation (fscm) with the vector sum of the short range force
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Figure 5.3: The long range force for a single particle is shown as a function of distance in this figure.
The solid curve shows the expected long range force and the dot-dashed curve shows the long range force
obtained in the simulation. The dashed curve represents the long range force obtained in the simulation
after removing the effect of the interpolating function. rs = 1 for all the three cases. The dashed curve
follows the theoretical curve remarkably well and peak fractional error is less than 0.4% over the entire
range of scales under consideration.
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due to all the particles in the cell (fs). We also have the total 1/r reference force fcm.

Then the relative error in the force contributed by the tree approximation is :

ǫs =
|fscm − fs|

|fcm|
(5.10)

Fig.5.4 shows the fractional error in the short range force ǫs as a function of distance r.

Here we have taken θc = 0.5 and rs = 1. The error has been plotted for Np = 10 and

Np = 30, where Np is the total number of particles in a cell. To obtain the error, particles

were distributed randomly in a cell and the force due to these particles was computed at an

external point. The error is smaller for larger Np as chances of an extreme distribution of

particles is smaller in such a case. The error is constant at small scales, increases around

the scales where the contribution of the short range force is decreasing rapidly, then

plummets to very small values at larger scales. The error is large around the transition

scale, i.e. around r ∼ rs, where the short range force deviates significantly from the 1/r

form.

5.3.3 Error in the TreePM Force

We turn to the question of errors in the TreePM force calculated by adding the short range

and the long range forces. It is important to estimate the errors in numerical evaluation of

the force in a realistic situation, even though we do not expect errors to add up coherently.

We compute errors for two distributions of particles : a homogeneous distribution and

a clumpy distribution. For the homogeneous distribution, we use randomly distributed

particles in a box. We use 10242 particles for the estimation and we use a 10242 grid

for the long range force calculation. We compute the force for a reference setup (rs = 4,

θc = 0.01, rcut = 6rs) and the setup we wish to test (rs = 1, θc = 0.5, rcut = 5rs). We

compute the fractional error in force acting on each particle. This is defined as

ǫ =
|f − fref |
|fref |

(5.11)

Fig.5.5 shows the cumulative distribution of fractional errors. The curves show the fraction

of particles with error greater than a threshold error ǫ. The solid line shows this for the
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Figure 5.4: This figure shows fractional error in the short range force as a function of distance from a
cell containing Np particles distributed at random. The solid curve corresponds to θc = 0.5 and Np = 30
and the dashed curve is for the same θc and Np = 10.
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homogeneous distribution; error ǫ for 99% of the particles is less than 4%. Results for

the clustered distribution of particles are shown by the dashed line and to generate this

distribution we used the output of a 2d power law (n = 1) simulation run with a Particle-

Mesh code in an Einstein deSitter background Universe. Errors in this case are somewhat

smaller as compared to the homogeneous distribution for much the same reason as that

for a 3d tree code (Hernquist, Bouchet and Suto, 1991) or the 3d TreePM code (Bagla,

2002; Bagla and Ray, 2003). Error ǫ for 99% of the particles is less than 2% for the

clustered distribution.

5.4 Integrating the Equation of Motion

Our discussion so far has dealt only with the evaluation of force. This is our main focus

here as the key difference between the TreePM and other methods is in the scheme used

for evaluation of force. We use the Einstein deSitter background for all the 2d TreePM

simulations. The equation of motion (eqns.1.47) is identical to that in three dimensions

apart from the obvious differences due to the fact that the system is two-dimensional. The

functional form of the gravitational force (~∇φ) for a point source is, of course, different.

We choose the timestep for evolution of positions and velocities to be a small fraction

of the smallest dynamical time in the system. The fraction chosen is fixed by requiring

scale invariance in evolution of power law spectra - a simulation is repeated with different

choices of the fraction until we converge to the largest timestep for which we can reach

the non-linear regime (ξ̄ ≫ 10) and retain scale invariance. We then use a timestep that

is half of this largest timestep.

Fig.5.6 shows ξ̄ as a function of r/rnl(t) for several epochs obtained from a 2d TreePM

simulation of a power law model with index n = −0.4. rnl(t) is the scale which is going

non-linear at time t and is defined by eqn.2.11. In the figure, we have plotted ξ̄ for scales

which are larger than two times the artificial softening length used in the simulation.

We can see that the evolution is scale invariant. Thus the TreePM code evolves density
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Figure 5.5: This figure shows the distribution of errors for a setup with rs = 1, θc = 0.5, rcut = 5rs.
The variation of the fraction of particles with error greater than a threshold, as a function of the threshold
error, is plotted. The solid line marks the error for a homogeneous distribution of particles and the dashed
line shows the same for a clustered distribution. These errors were measured with respect to a reference
force determined with very conservative values of rs and θc. The panel shows that 99% of the particles
have a fractional error in force that is less than 4% for the homogeneous distribution and less than 2%
for the clustered distribution.
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fluctuations correctly and can be used to study the strongly non-linear regime.

5.5 Comparison of the TreePM and the Particle-Mesh

Codes

We ran a 2d simulation of a power law model with index n = −0.4 with 10242 particles

on a 10242 grid in an Einstein deSitter background Universe with a Particle-Mesh code

as well as with the TreePM code. For the TreePM run we used rs = 1 and θc = 0.5. We

used cubic spline softening for the force with softening parameter ǫ = 0.2.

The upper panel of fig.5.7 shows a slice each from the TreePM and PM simulations

with the same initial conditions. The upper left panel shows the slice from the TreePM

simulation and the upper right panel the same from the PM simulation. The large scale

structures are indistinguishable in these panels. ξ̄(r) is plotted as a function of scale r

in the lower left panel of fig.5.7. The thick line shows the correlation function for the

TreePM simulation and the dashed line shows the same for the PM simulation. There

are significant differences at small scales in the two-point correlation function from the

two simulations. We have plotted ξ̄ at scales larger than twice the softening length used

in the TreePM simulation. The correlation function in the TreePM simulation matches

with that from the PM simulation at large scales, but at scales of the order of the grid

spacing and below, the TreePM simulation has a higher correlation function. This is an

indication of the better force resolution of the TreePM method. The scale of softening

for the PM code is marked by an arrow in the figure. This figure also shows that the PM

method gives correct results almost upto the softening length in a PM code.

We also study the density profiles of haloes. A halo has been marked by a circle in

the upper panel of fig.5.7 for the two simulations. This particular halo has been chosen as

representative for the analysis because it is reasonably large and isolated. The lower right

panel of fig.5.7 shows the average density ρ̄ within a sphere of radius r with respect to the

halo centre plotted as a function of r for the two haloes. The centre of a halo is defined
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Figure 5.6: This figure shows ξ̄ as a function of r/rnl(t) for several epochs. Here rnl(t) is the scale
which is going non-linear at time t and it varies in proportion with a2/(n+2) in the Einstein deSitter
model. The index of the power spectrum is n = −0.4. We have only plotted ξ̄ at scales larger than twice
the artificial softening length used in the simulation.
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Figure 5.7: The upper panel of this figure shows a slice from a simulation of a power law model with
index n = −0.4 for two cases. The upper left panel shows a slice from a TreePM simulation. and
the upper right the same slice from a PM simulation with the same initial conditions. The large scale
structures appear to be the same in the two. The lower left panel of this figure shows the averaged
correlation function ξ̄(r) as a function of scale in grid units. The solid line shows this quantity for the
TreePM simulation and the dashed line the same for the PM simulation. The scale marked by an arrow
in the figure represents the larger softening scale for the PM code. The correlation functions match at
large scales but the PM simulation underestimates the clustering at small scales. The lower right panel
is a plot which shows the average density ρ̄ within a sphere of radius r as a function of r (in grid units)
for the two halos circled in the upper panel of the same figure. Again, the thick line shows the average
density for the TreePM simulation and the dashed line shows the same for the PM simulation. The
density profiles match at large scales as expected, but one can see that the TreePM simulation gives rise
to haloes with higher central densities. We have plotted both ξ̄ and ρ̄ at scales which are at least two
times larger than the artificial softening length used in the TreePM simulation.
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as outlined in the discussion on the method of density peaks in §6.2 of Chapter 1 of the

thesis. The solid line shows the density profile for the halo from the TreePM simulation

and the dashed line the same from the PM simulation. We can see that, though not

visibly obvious from the simulation slices in fig.5.7, the halo from the TreePM simulation

is denser in the central region compared to the halo from the Particle-Mesh simulation.

The density profiles converge at some distance from the halo centres. This distance is

comparable to the softening length in the PM code.

5.6 Computational Requirements

In this section, we describe the computational resources required for our implementation

of the 2d TreePM code. Given that we have combined the tree and the PM codes, the

memory requirement is greater than that of either code. We need some variables per

grid cell for the PM part, i.e. for the potential and the force. As regards the rest, the

requirement is identical to that for a standard Barnes and Hut (2d) tree code. With

efficient memory management, we need less than 75MB of RAM for a simulation with

10242 particles on a 10242 grid. The number mentioned is for floating point variables.

We have used double precision variables for the test cases in this study. In that case the

requirement goes up by a factor of two. The time taken (per timestep per particle) by

the 2d TreePM code (rs = 1, θc = 0.5, rcut = 4.5rs, Np = 10242, Ngrid = 10242) is about

240 microseconds on a 2.4GHz Xeon workstation. The code has been compiled with the

Intel F90 compiler.

5.7 Summary

In this chapter, we have described the two-dimensional TreePM method. This method

offers greater dynamic range and better resolution compared to the 2d Particle-Mesh

method and can therefore probe the non-linear regime in two-dimensional cosmological
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simulations more effectively. The 2d TreePM code will allow us to explore a higher

dynamic range in densities for studying scaling relations in two-dimensions as compared

to earlier work done using Particle-Mesh codes (Bagla, Engineer and Padmanabhan, 1998;

Munshi and Coles, 1998). Work in this direction has been reported in a later chapter of

the thesis.



Chapter 6

Comments on the Size of the
Simulation Box in Cosmological
N-Body Simulations

N-Body simulations are an important tool in the study of formation of large scale struc-

tures. All of the work presented in this thesis is centred around algorithms for N-Body

simulations, particularly the TreePM method, and applications of N-Body simulations to

problems in gravitational clustering in the Universe. Much of the progress in understand-

ing the physics of the high redshift Universe and comparison with observations would

not have been possible without N-Body simulations. Given the importance of this tool it

is essential to understand its limitations as ignoring these can easily lead to interesting,

but unreliable results. In this chapter we analyse the limitations arising out of the finite

size of the simulation volume1. A finite size implies that modes larger than the size of

the simulation volume are ignored in the simulation and a truncated power spectrum is

simulated. In N-Body simulations, a representative region of the Universe is simulated

with periodic boundary conditions. The effect of perturbations at scales smaller than the

mass resolution of the simulation and that of perturbations at scales larger than the size

of the box are ignored. Indeed, even perturbations at scales comparable to the size of

the box are undersampled as the power spectrum is sampled at a discrete set of wave

1This chapter is based on Comments on the Size of the Simulation Box in Cosmological N-Body

Simulations (J.S. Bagla and S. Ray), astro-ph/0410373. Accepted for publication in MNRAS.
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numbers. It has been shown that, for gravitational dynamics in an expanding Universe,

perturbations at small scales do not significantly influence collapse of large scale pertur-

bations (Peebles, 1974a, 1985; Little, Weinberg and Park, 1991; Bagla and Padmanabhan,

1997b; Couchman and Peebles, 1998; Bagla, Prasad and Ray, 2004). Therefore, ignoring

perturbations at scales much smaller than the scales of interest does not affect the results

of N-Body simulations in a significant manner.

Use of periodic boundary conditions implies that the average density in the simulation

box equals the average density in the Universe. Therefore the size of the simulation volume

has to be chosen such that the amplitude of typical fluctuations at that scale and at larger

scales is ignorable. If the amplitude of perturbations at larger scales is not ignorable and

we do not take the contribution of these scales into account, then clearly the simulation

cannot be a faithful representation of the model being simulated. It is not obvious as to

when fluctuations at larger scales can be considered ignorable. We propose one method

of quantifying this in the work here.

It is known from earlier studies that if the amplitude of density perturbations at the

box scale is small but not ignorable, simulations underestimate the correlation function,

though the number density of low mass haloes does not change by much (Gelb and

Bertschinger, 1994a). In other words, the formation of small haloes is not affected, but

their distribution is affected by the non-inclusion of long wavelength modes. The number

of massive haloes changes significantly (Gelb and Bertschinger, 1994a).

Methods have been devised for incorporating the effects of perturbations at scales

larger than the simulation volume (Tormen and Bertschinger, 1996; Cole, 1997). These

methods assume that if, in any N-Body simulation, the boxsize is chosen to be large

enough, the contribution of larger scales can be incorporated by adding displacements and

velocities due to the larger scales independent of the evolution of the system. Essentially,

mode coupling between larger and smaller modes is ignored. The primary motivation

for developing tools of this nature is to expand the dynamic range over which results of

N-Body simulations are valid by adding corrections that change the distribution of matter
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Name Np Lbox ǫ Cutoff Scale

T 300 C 0 2563 300h−1Mpc 0.47h−1Mpc None 300h−1Mpc
T 300 C 2 2563 300h−1Mpc 0.47h−1Mpc k ≤ 2kf 150h−1Mpc
T 300 C 3 2563 300h−1Mpc 0.47h−1Mpc k ≤ 3kf 100h−1Mpc
T 300 C 4 2563 300h−1Mpc 0.47h−1Mpc k ≤ 4kf 75h−1Mpc

Table 6.1: This table lists the parameters for the N-Body simulations we have used. All the simulations
were done using the TreePM code with a configuration described in Chapter 3 of the thesis. We simulated
the ΛCDM model with Ωb = 0.05, Ωdm = 0.25, Ωnr = 0.3, k = 0, h = 0.7 and n = 1. The first column
lists the name of the simulation, the second column the number of particles in the simulation, the third
column the size of the box in physical units, the fourth column the softening length for force, the fifth
column the cutoff used in units of the fundamental mode kf of the simulation box and the last column
the corresponding cutoff scale in h−1Mpc.

and velocities at scales comparable to the simulation volume. But this invariably brings

up the issue of what is a large-enough scale in any given model such that these methods

can be used to add the effect of larger scales without introducing errors. Our goal in this

work is to understand the effect of large scales on scales that are much smaller than the

simulation volume. In this chapter of the thesis we propose a measure based on mass

functions to quantify the effect of large scales.

6.1 Numerical Experiments

We carried out a series of N-Body experiments in order to study the effect of perturbations

at large scales on perturbations at small scales. The simulations were carried out using

the TreePM method (Bagla, 2002; Bagla and Ray, 2003; Ray and Bagla, 2004). We

simulated the ΛCDM model with Ωb = 0.05, Ωdm = 0.25, Ωnr = 0.3, Ωtot = 1, h = 0.7

and n = 1. We ran a simulation without any truncation of the power spectrum save those

imposed by the finite size and resolution of the simulation box. This simulation serves

as a reference for other simulations where we truncated the power spectrum. We next

used a sharp cutoff such that the power spectrum at k ≤ kc was taken to be zero. In

the initial conditions for all the simulations run, the phases as well as the amplitudes of

corresponding waves were taken to be the same (except where the cutoffs were applied).

A comparison of these simulations allows us to estimate the effect of density perturbations
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Figure 6.1: This figure shows the averaged correlation function ξ̄ as a function of r for the models listed
in table 6.1. The amplitude of the correlation function decreases as the cutoff becomes smaller. The
correlation function is underestimated by 10% at r = 2h−1Mpc for a cutoff of 100h−1Mpc.

at large scales on growth of perturbations at small scales. Detailed specifications of these

simulations are listed in table 6.1 where the cutoff wave number is listed in units of the

fundamental mode kf = 2π/Lbox of the simulation box.

We compare the output of these simulations to see whether retaining or dropping of

long wave modes affects quantities of interest at smaller scales. In all these comparisons

we concentrate on scales smaller than 20h−1Mpc whereas the smallest cutoff we have

used is 75h−1Mpc, so that the two sets of scales are well separated. The amplitude of root
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Figure 6.2: This figure shows the skewness S3 as a function of r for the models listed in table 6.1. The
skewness decreases as the cutoff becomes smaller.
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mean square fluctuations in mass at r = 75h−1Mpc and z = 0 is σ ∼ 0.1 in the model

considered here and we can regard this to be small.

Fig.6.1 shows the averaged correlation function ξ̄ as a function of r at z = 0 for the

models listed in table 6.1. The amplitude of the correlation function decreases as cutoff

becomes smaller. The shape of the correlation function does not change at small scales.

This result follows expectations and is indeed similar to fig.2 in Gelb and Bertschinger

(1994). Thus the overall effect of perturbations at very large scales is to enhance the

amplitude of fluctuations at smaller scales. Ignoring larger scales leads to an underesti-

mation of correlations at small scales. The correlation function is underestimated by 10%

at r = 2h−1Mpc for a cutoff of 100h−1Mpc. At this scale (r = 100h−1Mpc), σ = 0.07

at z = 0. We have plotted the skewness S3 as a function of scale in fig.6.2 for the same

set of models. The differences between models here is pronounced. It is clear from these

two figures that fairly large scales (l ≤ 100h−1Mpc) make a significant contribution to

clustering at small scales (l ≤ 10h−1Mpc).

It is possible to correct for the contribution of larger scales for the moments of a

particle distribution (Colombi, Bouchet and Schaeffer, 1994). Thus if we are interested

only in the moments then we can take scales larger than the simulation volume into

account and compute the correct answer. There are many quantities of interest other

than the moments of a distribution and there is no generic method for computing the

corrections.

A method has been devised to incorporate the effect of displacements and velocities

contributed by large scales (Tormen and Bertschinger, 1996). Here displacements and

velocities contributed by larger scales are computed using the Zel’dovich approximation

(Zeldovich, 1970) and added to the numbers computed in an N-Body simulation. Es-

sentially this assumes that there is no coupling in contribution of modes within the box

and modes larger than the box. With this assumption other methods for computing the

displacements due to modes outside the box can also be used in place of the Zel’dovich

approximation. The assumption of no mode coupling is true only in the linear regime and
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Figure 6.3: Each panel of this figure shows the projected particle distribution in the neighbourhood of
a massive cluster from a simulation of the ΛCDM model. The top left panel is for the first simulation
in table 6.1, the top right panel for the second simulation, the lower left panel for the third simulation
and the lower right panel for the fourth simulation in the table. The total mass in the central massive
halo decreases as the large scale cutoff is introduced and then decreased. The number, masses and the
distribution of smaller clumps around the central clump also change significantly as the cutoff is reduced
below 150h−1Mpc.
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hence we still require the amplitude of perturbations at the scale of the simulation box

to be much smaller than unity. How small the amplitude should be can only be deter-

mined by trial and error. It has been pointed out that the effect of mode coupling can be

emulated by enhancing the displacements without modifying the velocities (Cole, 1997).

The amount of enhancement needed cannot be derived from first principles. These tools

essentially enhance the dynamic range of an N-Body simulation by making these correc-

tions - displacements due to large scales correct the velocity fields and the distribution of

particles at scales comparable to the simulation volume.

Corrections to displacements and velocities can be made without worrying about

mode coupling if their effect is small in some absolute sense. None of these methods can

be effective if the displacements contributed by large scale modes move two collapsed

objects to the same location or move matter that has fallen into a collapsed structure

out of it. If the contribution of modes that can affect collapsed structures is not taken

into account then the properties of these objects, e.g. mass, angular momentum, density

profile, etc., may differ significantly from their asymptotic values. This is illustrated in

fig.6.3. This figure shows the projected particle distribution in the neighbourhood of a

massive cluster from simulations of the ΛCDM model. The four panels correspond to

the models listed in table 6.1. The total mass in the central massive halo decreases as

the large scale cutoff is introduced and then decreased. The number, masses and the

distribution of smaller clumps around the central clump also change significantly as the

cutoff is reduced below 150h−1Mpc.

Fig.6.4 shows the fraction of mass in collapsed structures with mass greater than M

for the models listed in table 6.1. This fraction is plotted as a function of mass M . The

solid curve shows F (> M) for the simulation without an explicit cutoff (of course, there is

an implicit cutoff at the boxsize of 300h−1Mpc). Other curves show the same function for

different values of the cutoff and, as the cutoff scale becomes smaller, F (> M) decreases

at large M . At smaller masses (M ≤ 1014M⊙), the difference in models is negligible.

Differences between different curves at the high mass (M ≃ 1015M⊙) end are significant -
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more than a factor of two between the extreme curves. Thus ignoring large scale modes

results in an underestimation of the number of massive haloes. F (> M) varies rapidly up

to a cutoff of 150h−1Mpc and changes very little as the cutoff moves to larger scales. We

may conclude from here that scales larger than 150h−1Mpc do not contribute significantly

to collapsed structures in the currently favoured ΛCDM models.

6.2 The Proposed Criterion

In the previous section we have argued that the non-trivial contribution of large scale

modes is the one that leads to the collapse of haloes - other effects like displacements

can be incorporated, in principle, using algorithms like MAP (Tormen and Bertschinger,

1996; Cole, 1997). We can use this fact to devise a criterion to decide whether the boxsize

of a simulation is sufficiently large or not.

The mass fraction in collapsed haloes of mass M or larger is given by the Press-

Schechter mass function (Press and Schechter, 1974; Bond et al., 1991) :

F (M, z) = erfc

[

δc√
2σL (M, z)

]

(6.1)

The parameter δc indicates the linearly extrapolated density contrast at which the per-

turbation is expected to collapse and virialise in non-linear collapse. Its value is taken to

be 1.686 here - the precise value is not very relevant in this context. Here σL(M, z) is the

linearly extrapolated root mean square (rms) amplitude of fluctuations at the mass scale

M and redshift z.

σ2
L(M, z) = 9D2

+(z)

∞
∫

0

dk

k
∆2(k)

[

sin kr − kr cos kr

k3r3

]2

M =
4π

3
ρ̄nrr

3 (6.2)

Here P (k) is the power spectrum of density fluctuations, linearly extrapolated to z = 0

and D+(z) is the growing mode in the linear perturbation theory normalised so that

D+(z = 0) = 1. ρ̄nr is the average density of matter in the Universe.
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Figure 6.4: This figure shows the fraction of mass in collapsed structures with mass greater than M for
the models listed in table 6.1. The solid curve is for the simulation with no cutoff, the dashed curve for a
cutoff of 150h−1Mpc, the dot-dashed curve for a cutoff of 100h−1Mpc and the dotted curve for a cutoff of
75h−1Mpc. While the change in cutoff does not change the collapsed mass fraction for M ≤ 1014M⊙, the
collapsed fraction is underestimated at larger masses when we remove the large scale modes. Suppression
of mass function around M = 1015M⊙ is significant when the cutoff is at scales smaller than 150h−1Mpc.
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Figure 6.5: This figure shows the fraction of mass in collapsed structures with mass greater than M
for the ΛCDM model used here. This was computed using the Press-Schechter mass function (Press and
Schechter, 1974). A cutoff was used to remove contributions from large scales (see §3 for details). Note
that the values of the cutoff used here coincide with those used in the simulations of the models listed in
table 6.1 and plotted in fig.6.4.
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In an N-Body simulation, the initial conditions sample a range of values of the wave

number k. The amplitude of rms fluctuations in a simulation will be different for different

simulations due to the partial sampling of modes in any simulation. The lower end of the

range of modes sampled corresponds to the fundamental mode in the simulation volume

and the upper end (kmax) corresponds to the smallest scales sampled in the simulation.

From the form of the integral (eqn.6.2) it is clear that at a given scale r, wave modes with

k ≤ 2π/r contribute more significantly than the rest. Given this and the fact that most

modern N-Body simulations have sufficient dynamic range, we can concentrate on the

lower limit of the range of wave numbers sampled in an N-Body simulation as modes with

k ≥ kmax do not influence scales resolved in the simulation in any significant manner.

We can then estimate the rms fluctuations in an N-Body simulation by changing the

lower limit of the integral in eqn.(6.2) from 0 to 2π/Lbox while leaving the upper limit

unchanged. The fluctuations will now be a function of the cutoff as well :

σ2
L(M, z, Lbox) = 9D2

+(z)

×
∞
∫

2π/Lbox

dk

k
∆2(k)

[

sin kr − kr cos kr

k3r3

]2

(6.3)

We can use this in eqn.(6.1) and obtain F (M, z, Lbox), the expected collapsed mass fraction

in an N-Body simulation.

In the previous section we found that in an N-Body simulation the collapsed mass

fraction does not change by much if the cutoff is larger than 150h−1Mpc. This conclusion is

reaffirmed by the theoretical calculation of the mass function and collapsed mass fraction.

Fig.6.5 shows F (M, z = 0, Lbox) as a function of mass M for different values of the cutoff

scale Lbox. The masses in the most massive collapsed structures change rapidly with the

cutoff, implying that the number densities of the most massive structures depend strongly

on the large scale modes. Comparison with fig.6.4 shows that the theoretical calculation

and the simulations give comparable results.

The criterion we propose here is this : the physical scale Lbox corresponding to the

size of the simulation volume can be considered to be large enough if the expected fraction
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of mass in haloes F (M, z, Lbox) is comparable to F (M, z), the fraction of mass in haloes

when the full spectrum is taken into account. In other words, we require convergence

of expected mass in haloes for the simulation volume to be considered large enough so

that all the relevant scales are contained within it. As before, we are interested in the

effect of large scales on scales much smaller than Lbox. Therefore we wish to see this

convergence at the mass scales of typical haloes. We define the mass scale of non-linearity

as σL(M∗, z) = 1 and study the convergence of the mass function at this scale and at

neighbouring mass scales.

We look at two mass scales for the ΛCDM model : M∗ and 10M∗. As we shall

see, these are more relevant than smaller mass scales in most situations. We require

F (M, z, Lbox) = (1 − ǫ)F (M, z) to find the threshold length scale Lbox, with ǫ = 0.05

and a less conservative limit of ǫ = 0.1. These criteria allow us to develop a feel for our

approach. We certainly require reasonable convergence at the scale of non-linearity in

simulations. For some applications, as when studying rich clusters of galaxies, we require

good convergence for very massive haloes. Fig.6.6 shows Lbox as a function of redshift z

according to these criteria for the ΛCDM model (see §2 for the values of the cosmological

parameters). The solid curve (ǫ = 0.1) and the dot-dashed curve (ǫ = 0.05) are for

M = M∗, the dashed curve (ǫ = 0.1) and the dotted curve (ǫ = 0.05) for M = 10M∗.

For the ΛCDM model, M∗(z = 0) = 1.2 × 1014M⊙ - therefore the criteria used here refer

to mass scales of typical clusters of galaxies and rich clusters of galaxies respectively at

redshift z = 0. At z = 0, it is clear that a box larger than 100h−1Mpc is required even if

we are interested in haloes with mass M∗ and can tolerate an offset of 10% in the collapsed

mass. Using a smaller boxsize leads to a greater underestimation of the collapsed mass

in haloes. The requirement for the minimum boxsize becomes more stringent if we wish

to study rich clusters of galaxies or use a tolerance level of 5% (ǫ = 0.05).

At z = 3, M∗ = 1.2 × 1011M⊙. This is the mass of a typical galaxy halo at that

redshift and to get the statistics of these objects right we should have a boxsize of at

least 30h−1Mpc (ǫ = 0.1); the required boxsize increases to 50h−1Mpc if we demand an
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Figure 6.6: We have plotted Lbox as a function of redshift z for the ΛCDM model (see §2 for the values
of the cosmological parameters). Using a smaller boxsize than that prescribed here leads to a greater
underestimation of the collapsed mass in haloes than that given by the conditions used to generate these
curves.
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ǫ = 0.05 instead. A box of this size or an even larger simulation box should be used if we

wish to study the inter-galactic medium as there will be more matter left in uncollapsed

regions if we use a smaller simulation box. Bright Lyman break galaxies are likely to be

in more massive haloes than typical ones and a boxsize of 60h−1Mpc or larger is needed

to study these in an N-Body simulation.

At higher redshifts, simulations are often used for studying the reionisation of the

Universe. At z = 10, M∗ = 2 × 106M⊙. Sources of ionising radiation are likely to reside

in much more massive haloes and hence we should use a simulation box that is at least

20h−1Mpc across (M = 10M∗ and ǫ = 0.05). If we relax the requirement to ǫ = 0.1, then

the simulation volume should be more than 10h−1Mpc across.

Clearly, the requirement that the mass in collapsed haloes should not depend signif-

icantly on scales larger than the simulation box is fairly stringent and in some cases it

may make it difficult to address the physical problem of interest. This restriction is less

stringent than requiring that the correlation function of haloes converge as it has been

shown that the mass function converges well before the correlation function of haloes does

(Gelb and Bertschinger, 1994a). However, if the mass function has converged, tools like

MAP (Tormen and Bertschinger, 1996) can be used to obtain the correct distribution of

haloes. Our criterion can be used with different requirements on the convergence of col-

lapsed mass as long as these requirements are in consonance with the physical application

for which the simulation is being run.

The curves for ǫ = 0.1 are not parallel to the curves for ǫ = 0.05. This is due to a

dependence on the shape of the power spectrum. This dependence is brought out very

clearly in fig.6.7. Here we show Lbox as a function of the index of the power spectrum

for power law models with P (k) = Akn. The power spectrum is normalised such that

σL(r = 1) = 1. We have assumed an Einstein-de Sitter background for these models. The

solid curve (ǫ = 0.1) and the dot-dashed curve (ǫ = 0.05) are for M = M∗; the dashed

curve (ǫ = 0.1) and the dotted curve (ǫ = 0.05) are for M = 5M∗. It is clear from this

figure that it is difficult to explore the highly non-linear regime for smaller values of n
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Figure 6.7: Lbox is shown as a function of the index of the power spectrum for power law models
with P (k) = Akn. The power spectrum is normalised such that σL(r = 1) = 1. We have assumed an
Einstein-de Sitter background for these models. It is clear from this figure that it is difficult to explore
the highly non-linear regime for smaller values of n.
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because the required boxsize increases rapidly as (n+ 3) → 0.

These figures show that the convergence of collapsed mass in haloes happens slowly

for most models of interest. The offset in collapsed mass for the the simulated model

(with a finite sampling of scales) from the collapsed mass for the model that we wish to

simulate is a useful indicator of the relevance of large scales. This fact allows us to use our

criterion to decide the appropriate size of the simulation volume; the criterion supplies

the lower bound on the size.

6.3 Summary and Conclusions

We have studied the influence of long wave modes on gravitational clustering at small

scales. We find that for the ΛCDM model scales larger than 100h−1Mpc affect the mass

function of haloes and the distribution of matter at scales as small as a few Mpc. The

effect of long wave modes not present in an N-Body simulation can be incorporated inde-

pendently of the evolution at small scales for some quantities, but making such corrections

is not possible in general. In particular, it is not possible to make corrections if the con-

tribution of large scales changes the mass of collapsed haloes by a significant amount. We

can turn this argument around and check whether a given size of the simulation volume

can give (close to) correct results for the total collapsed mass in haloes or not. This can

be done using the simple analytical formulae outlined in §3 of this chapter. The fractional

deviation of collapsed mass from its expected value, if density fluctuations at all scales

are taken into account, is a good indicator of the influence of large scales. The fractional

deviation (ǫ) can be checked at a given mass scale M of physical interest. Given a choice

of M , ǫ and the redshift z at which the output of the simulation is to be studied, we can

compute the recommended minimum size for the simulation volume. It is important to

note that this scale is the minimum required and a larger simulation may be warranted

by other requirements.

The mass in collapsed haloes converges faster than the correlation function of haloes
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implying that an even larger simulation volume may be required. Corrections to positions

and velocities due to large scales can be made using tools such as MAP (Tormen and

Bertschinger, 1996; Cole, 1997). Thus we can choose the boxsize by requiring convergence

of mass in haloes (unless one can make a convincing case that the relevant physical

quantities under study are not as sensitive to the size of the simulation box as the mass in

collapsed haloes) and then use MAP to get the correct distribution and velocity field at all

scales. Of course, if MAP is not being used, a larger boxsize than the minimum indicated

by the convergence of the mass function may be required. Though using a large boxsize

can make it difficult to address several interesting questions using N-Body simulations,

we believe that it is better to be cautious.



Chapter 7

Scaling Relations for
Two-Dimensional Collapse

Non-linear scaling relations indicate that there are three distinct regimes in the evolution

of gravitational clustering. The asymptotic or the highly non-linear regime is the primary

focus of our attention in this chapter of the thesis. Several earlier studies have analysed

the evolution of clustering in the asymptotic regime, mainly with the help of N-Body

simulations (Peacock and Dodds, 1994; Jain, Mo and White, 1995; Colombi, Bouchet

and Hernquist, 1996; Padmanabhan et al., 1996; Peacock and Dodds, 1996; Jain, 1997;

Kanekar, 2000; Smith et al., 2003). Key conclusions about the asymptotic regime can be

summarised as follows :

• Stable clustering is not reached in the range of non-linearities explored by N-Body

simulations. However, the departure from stable clustering for most models is small.

• Gravitational clustering does not erase the memory of initial conditions, i.e. the

non-linear power spectrum is not independent of the linear power spectrum upto the

extent non-linearities have been probed. There is no universal asymptotic regime.

One of the main reasons behind the inability to resolve the issue of the asymptotic

regime has been the limited dynamic range of N-Body simulations. As discussed in Chap-

ter 5, the problem of dynamic range can be circumvented by simulating a two-dimensional
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system (Bouchet, Adam and Pellat, 1985; Engineer, Srinivasan and Padmanabhan, 1999;

Padmanabhan and Kanekar, 2000). Non-linear scaling relations are likely to have features

independent of dimension. In fact, the scaling relations in the quasi-linear regime were

predicted (Padmanabhan, 1996) for two-dimensional clustering well before these could be

tested in simulations (Bagla, Engineer and Padmanabhan, 1998). It is therefore reason-

able to expect that, if we can understand the nature of the asymptotic regime in two

dimensions, it will help us solve the problem in three dimensions, even if we cannot map

the two-dimensional solution directly to the full problem in three dimensions.

Previous studies of gravitational clustering in two dimensions concluded that there

is no stable clustering (Bagla, Engineer and Padmanabhan, 1998; Munshi et al., 1998).

Both the studies referred to here were limited to ξ̄ ≪ 100 and the dynamic range in

the non-linear regime was limited. In this work1 we revisit the same issues using the 2d

TreePM code (Ray, 2004). The TreePM code has a better force resolution compared to a

PM code (Bouchet, Adam and Pellat, 1985; Ray, 2004); therefore our simulations have a

significantly larger dynamic range over which we can study the asymptotic regime.

A related issue is that of the density profiles of massive haloes. Non-linear scaling

relations in the asymptotic regime depend on the kind of dynamical equilibrium that is

reached in massive haloes, if an equilibrium is ever reached. Density profiles of massive

haloes can be related to the initial conditions and also to the dynamics within these haloes

(Filmore and Goldreich, 1984; Subramanian, 2000). It has been claimed that gravitational

clustering in hierarchical models leads to a universal density profile (Navarro, Frenk and

White, 1996) which is independent of the initial conditions. This density profile, often

referred to as the NFW profile, is given by

ρ
NF W

(r) ∝ 1

r(r2 + r2
200)

(7.1)

Here r200 is a scale radius. This profile is characterised by a r−3 decline at large radii and

a cuspy inner profile of the form ρ(r) ∝ 1/r. The claim of universality has been tested

1This chapter is based on Gravitational Collapse in an Expanding Universe : Scaling Relations for

Two-Dimensional Collapse Revisited (S. Ray, J.S. Bagla and T. Padmanabhan), astro-ph/0410041.
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(Navarro, Frenk and White, 1996; Cole and Lacey, 1996; Fukushige and Makino, 1997;

Tormen, Bouchet and White, 1997; Moore et al., 1998; Kravtsov et al., 1998; Ghigna et

al., 2000; Subramanian, Cen and Ostriker, 2000; Klypin et al., 2001; Power et al., 2003;

Fukushige, Kawai and Makino, 2004) and the NFW profile is found to be consistent with

the density profiles of massive haloes in N-Body simulations, even though it may not

be the best fit. This essentially implies that there is a scatter in the slopes of density

profiles obtained and one can fit different functional forms to the N-Body data. The

possibility of existence of NFW-like profiles implies that there are some universal aspects

of gravitational clustering in an expanding Universe. There is no ab initio derivation of

the NFW profile, but one can argue that, if there is a universal profile, it should have

same asymptotes as the form shown above (Syer and White, 1998).

7.1 The Scaling Relations

In this section, we review the scaling relations in gravitational clustering in both two and

three dimensions.

7.1.1 Scaling Relations in Three Dimensions

Given an initial power spectrum, one can compute the linearly extrapolated two-point

correlation function at any epoch. Scaling relations are a prescription for relating the

non-linear correlation function and the linear correlation function and are therefore an

important tool in understanding non-linear gravitational clustering.

The scaling relations are written for the averaged correlation function given by

ξ̄(t, x) =
3

x3

∫ x

0
ξ(t, y)y2dy (7.2)

The average number of neighbours within a distance x of a particle is

N(x, t) = (na3)
∫ x

o
4πy2dy[1 + ξ(y, t)] (7.3)
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where n is the comoving number density. The conservation law for pairs (Peebles, 1980;

Nityananda and Padmanabhan, 1994) is

∂ξ

∂t
+

1

ax2

∂

∂x
[x2(1 + ξ)vp

rad] = 0 (7.4)

where vp
rad(t, x) = vp · x̂ denotes the radial component of the average relative velocity of

pairs vp at separation x and epoch t. Using

(1 + ξ) =
1

3x2

∂

∂x
[x3(1 + ξ̄)] (7.5)

in (7.4), we get

1

3x2

∂

∂x
[x3 ∂

∂t
(1 + ξ̄)] = − 1

ax2

∂

∂x

[

vp
rad

3

∂

∂x
[x2(1 + ξ̄)]

]

. (7.6)

Integrating, we find that

x3 ∂

∂t
(1 + ξ̄) = −vp

rad

a

∂

∂x
[x3(1 + ξ̄)] (7.7)

(The integration allows the addition of an arbitrary function of t on the right hand side.

This function is set to zero so as to reproduce the correct limiting behaviour at the linear

end (ξ̄ ≪ 1), where vp
rad/ȧx = − (2/3) ξ̄ for an Einstein de-Sitter Universe.) We change

variables from t to a :

a
∂

∂a
[1 + ξ̄(a, x)] =

(

vp
rad

−ȧx

)

1

x2

∂

∂x
[x3(1 + ξ̄(a, x))] (7.8)

Defining h(a, x) = −(vp
rad/ȧx), we get

(

∂

∂ ln a
− h

∂

∂ ln x

)

(1 + ξ̄) = 3h
(

1 + ξ̄
)

(7.9)

This equation shows that the evolution of ξ̄(a, x) is essentially decided by the function h.

In the extreme non-linear limit
(

ξ̄ ≫ 1
)

, it is expected that bound structures will

form and will have constant proper sizes (Peebles, 1980; Nityananda and Padmanabhan,

1994; Padmanabhan, 2000). To maintain a stable structure, the radial component of the

relative pair velocity vp
rad(a, x) of particles separated by x should balance the Hubble

velocity Hr = ȧx at the same scale; hence vp
rad = −ȧx, or h(a, x) = 1 (the stable
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clustering hypothesis). The behaviour of h(a, x) for an Einstein de-Sitter Universe for

ξ̄ ≪ 1 follows from linear theory and h = (2/3)ξ̄ in this limit. Thus h(a, x) depends on

(a, x) only through ξ̄(a, x) in the linear limit, while h ∼= 1 is the non-linear limit. If we

assume that h depends on a and x only through ξ̄(a, x), i.e. h(a, x) = h[ξ̄(a, x)], then we

can solve eqn.7.9 :

ξ̄L(a, l) = exp

(

2

3

∫ ξ̄(a,x) dµ

h(µ)(1 + µ)

)

; l = x[1 + ξ̄(a, x)]1/3 (7.10)

Given the function h(ξ̄), this relates ξ̄L and ξ̄. Equivalently, it gives a mapping ξ̄(a, x) =

U [ξ̄L(a, l)] between the non-linear and linear correlation functions evaluated at scales x

and l respectively. Here ξ̄L is the linearly extrapolated mean correlation function. The

(2/3) factor in the exponent is (2/D) in D-dimensions and the relation between the linear

and the non-linear scales transforms to l = x[1 + ξ̄(a, x)]1/D. The non-local nature of this

relation represents the transfer of power in gravitational clustering and cannot be ignored

or approximated by a local relation between ξ̄NL(a, x) and ξ̄L(a, x). In the linear regime
(

ξ̄ ≪ 1, ξ̄L ≪ 1
)

U(ξ̄L) ≃ ξ̄L. The non-linear phases of evolution can be conveniently

divided into two parts, the quasi-linear (1 ≤ ξ̄ ≤ 200) and the highly non-linear or

asymptotic (200 ≤ ξ̄) regimes. The quasi-linear regime can be called the regime of radial

infall. In the non-linear or asymptotic phase virialized systems dominate. The scaling

relations in three dimensions are :

ξ̄(a, x) ∝











ξ̄L(a, l) (Linear)
ξ̄L(a, l)

3 (Radial Infall)
ξ̄L(a, l)

3h/2 (Asymptotic limit)
(7.11)

Here h is the asymptotic value of the dimensionless radial pair velocity.

7.1.2 Scaling Relations in Two Dimensions

It is possible to obtain similar relations between ξ(a, x) and ξL(a, l) in two dimensions

and the relation can be obtained, as before, from the pair conservation equation (Peebles,

1980; Nityananda and Padmanabhan, 1994) :

∂D

∂A
− h(A, x)

∂D

∂X
= 2h(A,X) (7.12)
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Here D = log(1+ ξ̄), X = log(x) and A = log(a). The characteristics of this equation

are

x2
[

1 + ξ̄(x, a)
]

= l2 (7.13)

Self-similar radial collapse models (Filmore and Goldreich, 1984) for collapse of cylindrical

perturbations show that the turn-around radius for a shell and the initial density contrast

inside the shell are related as xta ∝ l/δ̄i ∝ l/ξ̄L(l). Noting that in two dimensions mass

enclosed in a shell M ∝ x2, we find ξ̄(x) ∝
[

ξ̄L(l)
]2

in the regime dominated by infall. In

2d, the scaling relations have the form

ξ̄(a, x) ∝











ξ̄L(a, l) (Linear)
ξ̄L(a, l)

2 (Radial Infall)
ξ̄L(a, l)

h (Asymptotic limit)
(7.14)

h is again the asymptotic value of the radial pair velocity. The usual stable clustering

limit is h = 1. In such a case, or for any value of h that does not depend on the initial

conditions, slope of the non-linear correlation function is a unique function of the slope of

the initial correlation function. For a general h, we can relate the slope of the correlation

function in the asymptotic regime to the slope of the initial linear correlation function :

ξ̄(a, x) ∝ x2h(n+2)/(2+h(n+2)) (7.15)

If, however, h(n + 2) = constant, then the non-linear correlation function has the same

slope, independent of the initial correlation function. This will happen if gravitational

clustering erases all memory of initial conditions. Note that this will make h and hence

the velocity fields a function of the initial conditions.

In an earlier work, Bagla, Engineer and Padmanabhan (1998) had concluded that

h ≃ 0.75 in the asymptotic regime. In the same work as well as in investigations by

others (Munshi et al., 1998), the prediction for the infall-dominated quasi-linear regime

had been confirmed. In this work, we would like to address the following two questions :

• does the asymptotic value of h scale with n such that h(n + 2) = constant ? or

• does h reach a universal value independent of n ? If so, then what is this value ?
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7.2 Numerical Experiments

We carried out a series of numerical experiments with power law models with indices

n = −0.4, 0.0 and 1.0. It is difficult to reach the asymptotic regime for (n+2) → 0 before

the perturbations at the box scale become important and hence we have not used models

with a more negative index. Models were normalised so that ∆2(k = 8kf , a = 1) = 1

where kf is the wave number of the fundamental mode; essentially the fluctuations at 1/8

of the box size were normalised to unity at a = 1. Simulations were run upto a sufficiently

late epoch while requiring that the fluctuations at half the box scale were well within the

linear regime at the final epoch, i.e. ∆2(k = 2kf , afin) ≪ 1.

Simulations discussed here had 20482 particles on a 20482 grid in an Einstein deSitter

background Universe. The 2d TreePM code was used for all the simulations, though we

have checked many of the results in 40962 Particle-Mesh simulations as well.

7.2.1 The Two-Point Correlation Function

We find that the evolution of the system is self similar - all the relevant quantities have

the same form when scaled by rnl ∝ a2/(n+2), where rnl is the scale at which the amplitude

of density fluctuations is unity. Fig.7.1 shows the averaged correlation function ξ̄(r) as

a function of r/rnl for simulations with n = −0.4 (upper panel) and n = 1.0 (lower

panel). Curves were plotted for scales larger than twice the softening length used in the

simulations in order to keep out features that depend on the choice of the softening length.

The evolution is self-similar upto and beyond ξ̄ = 100.

The shape of the correlation function ξ̄(r) for the quasi-linear regime is consistent

with the results of earlier studies (Bagla, Engineer and Padmanabhan, 1998; Munshi et al.,

1998). There was disagreement between the above-mentioned studies for the asymptotic

regime : one study (Bagla, Engineer and Padmanabhan, 1998) favoured h ≃ 0.75 and the

other found h(n+2) = 1.3 (Munshi et al., 1998). The latter behaviour erases the memory
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Figure 7.1: ξ̄ is plotted as a function of r/rnl for simulations with spectral index n = −0.4 (upper
panel) and n = 1.0 (lower panel). The curves span more than a decade in scale factor. Clearly, over the
entire range of clustering, the evolution is self-similar. Dashed lines in these panels shows the asymptotic
slope for h = 0.75, a result suggested by an earlier study (Bagla, Engineer and Padmanabhan, 1998).
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of initial conditions and the slope of the correlation function in the asymptotic regime is

then the same for all models. The dynamic range in both the studies was narrow, being

limited to ξ̄ ≤ 40.

The current work agrees with a slope of the correlation function corresponding to a

value of h = 0.75 in the region of overlap with the earlier work by Bagla, Engineer and

Padmanabhan (1998) and it rules out h(n+2) = 1.3. A dashed line corresponding to the

expected slope of h = 0.75 is marked in both panels of fig.7.1 and it runs parallel to the

curve upto about ξ̄ ≃ 40, the largest non-linearity studied earlier (Bagla, Engineer and

Padmanabhan, 1998). As the clustering amplitude increases, the slope of the correlation

function decreases below the slope expected for h = 0.75. The asymptotic slope of the

correlation function is −0.53 ≤ γ ≤ −0.50 for n = −0.4 and −0.80 ≤ γ ≤ −0.77

for n = 1, where γ = ∂ log ξ̄/∂ log r and is evaluated at ξ̄ ≥ 100. We have given the

95% confidence limits on the slope and the limits were derived using a χ2 fit to the

correlation function in the asymptotic regime. Different values of γ imply departure from

the asymptote with h(n+2) = constant. The range of values of γ listed here are consistent

with 0.416 ≤ h ≤ 0.451 for n = −0.4 and 0.417 ≤ h ≤ 0.444 for n = 1. Thus we recover

a similar range of asymptotic values for h from the correlation function. Slope of the

correlation function is a more stable estimator of h than a direct determination.

Fig.7.2 shows the scaling relations for two-dimensional gravitational clustering. ξ̄(x, a)

is plotted as a function of ξ̄L(l, a) for n = −0.4, n = 0 and n = 1. Data from multiple

epochs have been used here. Curves marking the linear, quasi-linear and the asymptotic

regimes are shown in the figure. We have also marked a line showing the stable clustering

limit. The equations for the piecewise fit are :

ξ̄(a, x) =















ξ̄L(a, l) ξ̄L(l) ≤ 0.5; ξ̄(x) ≤ 0.5

2 ξ̄L(a, l)
2

0.5 ≤ ξ̄L(l) ≤ 2; 0.5 ≤ ξ̄(x) ≤ 8

10.5 ξ̄L(a, l)
0.45

10 ≤ ξ̄L(l); 22 ≤ ξ̄(x)

(7.16)

It is remarkable that the points for all the three models follow the same scaling relations

in all the three regimes. The asymptotic slope implied by the scaling relation lies near

h = 0.45, but it is difficult to say whether this is the final value or if it would continue
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Figure 7.2: This figure shows the scaling relations for two-dimensional gravitational clustering. ξ̄(x, a)
is plotted as a function of ξ̄L(l, a) for n = −0.4, n = 0 and n = 1. Data from multiple epochs has
been used here. Curves marking the linear (solid curve), quasi-linear (dashed curve) and the asymptotic
regime (dot-dashed curve) are shown. We have also marked a dotted line showing the stable clustering
limit. A remarkable feature of clustering in two dimensions is that the non-linear correlation function in
the asymptotic regime is smaller than the linear correlation function.
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to decrease as we go to higher non-linearities. Note that the value of h favoured by

the data at ξ̄ ≥ 100 is slightly lower, as is clear from the values obtained from the

slope of the correlation function. This figure is clearly inconsistent with an asymptote of

h(n+ 2) = constant as the scaling relation for different models would have been different

in that case.

The results shown here were obtained with the TreePM code and they match with

the correlation function obtained in 40962 Particle-Mesh simulations. The comparison

was carried out up to ξ̄ = 70.

7.2.2 The Radial Pair Velocity

Fig.7.3 shows the pair velocity h(r, a) as a function of ξ̄(r, a) for several epochs for n =

−0.4 (upper panel) and n = 1.0 (lower panel). The dashed line shows the expected

value of h in the linear limit. For the linear and quasi-linear (ξ̄ ≤ 10) regimes, h is a

single-valued function of ξ̄, irrespective of the epoch for a given model. Indeed, we find

that there is no significant difference between the curves for different models at ξ̄ ≤ 10.

At higher non-linearities, there is scatter in the curves so that it is difficult to test any

claims using the figure. Thus the ansatz that h depends on epoch and scale only through

ξ̄ (Nityananda and Padmanabhan, 1994) is consistent with our simulation data and this

allows us to find the form of the scaling relations. Conversely, non-linear scaling relations

can be used to find h(ξ̄). We have checked that the scaling relations plotted in fig.7.2 are

consistent with the h(ξ̄) curves plotted in fig.7.3.

The value of h fluctuates a lot at late epochs and, as we mentioned in the previous

section, the slope of the correlation function gives a more stable estimate of h. The key

feature in this regime is that h < 1 and it does not show any sign of heading towards

the stable clustering limit of h = 1. This is consistent with our results for the slope of

correlation function that we obtained in the previous section.

It is important to understand what h < 1 means in terms of dynamics. One possibility
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Figure 7.3: The pair velocity h(r, a) is plotted as a function of ξ̄(r, a) for a large number of epochs a
for models with n = −0.4 (upper panel) and n = 1.0 (lower panel). The dashed line shows the expected
value of h in the linear limit. The h − ξ̄ curves are the same across all epochs and for all models within
the scatter.
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Figure 7.4: The transverse component of the pair velocity g(r, a) is plotted as a function of ξ̄(r, a) for
a late epoch for models with n = −0.4 (upper panel) and n = 1.0 (lower panel). The magnitude |g|
is plotted here; a remarkable fact apparent from this figure is that the transverse component is more
important for n = 1. At ξ̄ ≫ 1, the magnitude of g is comparable with that of h.
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is that haloes are evaporating. This can happen if two-body relaxation is important; but

we have used the softening length ǫ ≥ 0.2 grid lengths in all our simulations and the

number density of particles in most haloes in our simulations is very high. Hence two-

body scattering should not be important. A poor integrator for the equation of motion

can also lead to evaporation from haloes. We have tested the integrator that we use in

three-body problems and with highly eccentric binary orbits and this possibility can also

be ruled out.

7.2.3 Non-Radial Motions

Now we study the transverse counterpart of h. Analogous to h, we can define the trans-

verse pair velocity function as

g(r, a) = − (vp × r) /Hr2 (7.17)

In two dimensions, it takes the following simple form :

g(r, a) = −
vpxy − vpyx

Hr2
(7.18)

Here vp is the mean velocity of pairs, r ≡ (x, y) the separation of pairs of particles and H ,

as usual, the Hubble parameter. In two dimensions, the “cross” product of two vectors

is just a number. Fig.7.4 shows |g| as a function of ξ̄. In the figure, we have plotted

the magnitude of g(r, a) as its value oscillates about zero at large scales. The curve is

plotted for only one epoch, but the relative value of |g| compared to h shows that this is a

significant component in the non-linear region. Note that we require coherent transverse

motions in order to detect anything here as random transverse motions will cancel out

otherwise. We have also studied velocity dispersions and we do not find any systematic

excess in the pairwise transverse velocity dispersion in comparison to the pairwise collinear

velocity dispersion. In dynamical equilibrium these should have the same magnitude in

two dimensions and at ξ̄ ≥ 10 we find this to be true.

To investigate this further, we have studied motions within individual haloes by plot-

ting the angular momentum profile of a halo as a function of distance from the centre
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Figure 7.5: In this figure we plot the circularly averaged angular momenta of particles in a halo within
a distance r from the centre of mass of the halo for some haloes. The upper panel is for index n = −0.4
and the lower one for n = 1.0. Clearly all the haloes in both panels have annuli with coherent rotations.
Different line styles in the figure correspond to different haloes.
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of the halo. There are no systematic features worth commenting on, except that there

are annuli with coherent rotations for most haloes. Fig.7.5 shows the circularly averaged

angular momenta of particles in a halo within a distance r from the centre of mass of the

halo for some (randomly selected) haloes. The upper panel is for index n = −0.4 and the

lower one for n = 1.0. Clearly, all the haloes in both panels have annuli with coherent

rotation. (A discussion of the selection criteria adopted for haloes used here is given in

the next subsection.)

It is important to understand the origin of coherent transverse motions in massive

haloes. Comparing the g − ξ̄ plots for n = −0.4 and n = 1 offers us an important clue;

transverse motions are much stronger for n = 1 compared to the other model. Collisions

between substructure falling into haloes in the early phases of evolution can generate

transverse motions of this nature (Bagla, Prasad and Ray, 2004) and there is certainly

more substructure in the n = 1 model. We put forward the hypothesis that collisions

between substructure are responsible for generation of coherent transverse motions. We

are testing this hypothesis in a series of numerical experiments. Results of these studies

will be reported elsewhere.

7.2.4 Density Profiles of Massive Haloes

Density profiles of massive haloes and the non-linear scaling relation are closely related.

Massive haloes can be studied here as they extend over a large region - large compared to

the softening length. We identified haloes in our simulations using the method described

in Chapter 1, §6 (Tormen, Bouchet and White, 1997). In this method, the density field

is smoothed at a length scale R (we take R = 5 grid lengths) and peaks in the smoothed

density field are identified. Particles within a distance R of a peak are selected and we

find the centre of mass for these particles. We now select a smaller set of particles from

this group, i.e. those that are within R − ∆R from the centre of mass and compute the

centre of mass. The iterative process continues till we are left with only about a hundred

particles. The centre of mass of these particles is taken to be the centre of the halo and
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Figure 7.6: This figure shows spherically averaged density profiles of a number of spherically symmetric
virialised haloes from simulations with indices n = −0.4 (upper panel) and n = 1.0 (lower panel). The
density is plotted as a function of r/r200, where r200 is the scale at which density is 200 times the average
density in the simulation. The four dashed lines in each panel mark the approximate extremes of inner
(γ) and outer slopes (β) for the density profiles. All the haloes in the figure were taken from TreePM
simulations with 20482 particles.



152 CHAPTER 7. SCALING RELATIONS FOR TWO-DIMENSIONAL COLLAPSE

density profiles are plotted in terms of the distance from this centre. We applied two

further criteria :

• Central density contrast of the halo must be large : δ ≥ 500.

• Haloes and their neighbourhood should be smooth and there should be no mergers

going on. To implement this in an objective manner we compute the ratio χ =

〈cos2 φ〉/〈sin2 φ〉 where the average is over all particles within the central region of

the halo and φ is the position angle of a particle from the centre of mass of the halo.

We require 0.9 ≥ χ ≥ 1.1 for a halo for its density profile to be used in the analysis.

Fig.7.6 shows the density profiles of haloes that satisfy these criteria. Density profiles

of a large number of haloes have been plotted; for each halo we have drawn the density

ρ as a function of r/r200, where r200 is the scale at which the density is 200 times the

average density, average density being unity in the simulations. The top panel shows the

density profiles for n = −0.4 and the lower panel that for n = 1.0. It is clear that there is

a large scatter in density profiles. The inner slope varies from −0.4 to −1.4 for n = −0.4,

whereas it is in the range −0.6 to −1.6 for n = 1. The inner slope γ is obtained by fitting

a power law that passes through ρ = 200 and r/r200 = 1.0 and only points inside of this

radius are used. The distribution of the inner slopes of the density profiles is very broad.

The median γ is approximately −0.9 for n = −0.4 and −1.1 for n = 1.0. Self-similar,

spherical collapse predicts an inner slope of −0.89 and −1.2 for n = −0.4 and n = 1

respectively. These values are well within the scatter of the inner slopes.

Transverse motions can affect the density profiles of massive haloes in a significant

manner (Subramanian, 2000). Such effects will be stronger if the transverse motions

are stronger and, as is obvious from fig.7.3, transverse motions are stronger for larger

n. Rotation is playing a more important role in models with more substructure and is

leading to flatter density profiles. This reduces the difference between density profiles of

massive haloes for these models.
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Figure 7.7: The average kinetic energy T of massive haloes is plotted against M2 on a log-log scale.
Each point on this graph represents one halo and we have used the same set of haloes that have been
used for studying the density profiles. The plot shows that T ∝ M2 and hence the haloes are close to
dynamical equilibrium.
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7.2.5 Virial Equilibrium

The stable clustering limit requires the formation of objects that are in dynamical equi-

librium. Whether these objects exist or not can be tested using the virial theorem in

proper coordinates. In D-dimensions, the equation of motion for the ith particle is

mir̈i = −
∑

j 6=i

Gmimj (ri − rj)

|(ri − rj)|D
(7.19)

Taking the dot product of this equation with ri and using the antisymmetry of the right

hand side on (i, j), we can obtain the following :

1

2
Ï = 2

∑

i

1

2
miṙ

2
i −

1

2

∑

i

∑

j 6=i

Gmimj

|(ri − rj)|D−2
(7.20)

where I =
∑

mir
2
i is the trace of the moment of inertia tensor. Note that in D = 3, the

second term leads to the potential energy while in D = 2, it is a constant unrelated to the

potential energy of the configuration. In steady state, in proper coordinates, we can set

the second time derivative of I to zero for a cluster of particles in dynamical equilibrium.

In D=3 this gives the usual 2T + U = 0 result, while in D = 2 we get :

2T = 2
∑

i

1

2
miṙ

2
i

=
1

2

∑

i

∑

j 6=i

Gmimj

=
1

2
GM2

(

1 − 1

N

)

≃ 1

2
GM2 (7.21)

where the sums are over all particles. Particles are located at ri and have velocities ṙi

and mi is the mass of the ith particle. We assume that all the particles have the same

mass to get the penultimate expression. Here N is the number of particles in a halo. For

sufficiently large N , we can ignore 1/N in comparison with unity. Thus the kinetic energy

depends only on the total mass of the halo. If the massive haloes that we are studying here

are in virial equilibrium, then the kinetic energy T for these haloes should be proportional

to M2. We use all the particles within the radius r200 in a halo to compute the mass of

the halo and fig.7.7 shows the two quantities (T and M2) plotted against each other for

the massive haloes that we used in our study of density profiles. It is clear that these
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quantities are correlated even though there is some scatter about the average relation.

We may conclude that the massive haloes identified and studied in our simulations are

close to dynamical equilibrium.

7.3 Summary

The basic motivation for the work presented in this chapter was to improve our under-

standing of the non-linear scaling relation for two-dimensional gravitational clustering.

Previous studies (Bagla, Engineer and Padmanabhan, 1998; Munshi et al., 1998) had es-

tablished the behaviour for the quasi-linear regime, but could not probe the nature of the

asymptotic regime in detail. We used the 2d TreePM code (Ray, 2004) which allowed

us to study the non-linear regime in far greater detail compared to the PM code used in

earlier studies. Our results can be summarised as follows :

• The evolution of the correlation function for power law models is scale- invariant up

to the highest non-linearities studied in our simulations.

• We reproduce the results of earlier studies in the quasi-linear regime. We confirm

that the slope of the scaling relation in this regime is close to 2, as predicted on the

basis of the infall-dominated growth model (Padmanabhan, 1996).

• We do not find any difference between the scaling relations for different power law

models. Thus the information about initial conditions is retained even in the ex-

tremely non-linear regime.

• The stable clustering limit (h → 1 as ξ̄ → ∞) is not reached, but there is a

model independent non-linear scaling relation in the asymptotic regime. (Though

it is generally claimed that stable clustering with h → 1 is a natural asymptotic

state, it has been shown that the Davis-Peebles scale-invariant solution (Davis and

Peebles, 1977) and the hierarchical model for the three-point correlation function
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are inconsistent with the standard stable clustering picture (Kanekar, 2000). This,

of course, is for gravitational collapse in three dimensions.)

• The correlation function in the extremely non-linear regime is a less steep function

of scale than reported in earlier studies. Pair velocities in the asymptotic regime

are smaller than expected from the stable clustering model. We show that massive

haloes have coherent rotation in annuli. This is further confirmed by a study of the

transverse component of the pair velocity - the average over all particles for this

quantity is non-zero and comparable in magnitude to the radial component.

• The transverse component of the pair velocity is more significant for models with

a larger spectral index, i.e. for models with more substructure. This suggests that

gravitational collisions between substructure might be responsible for generating

coherent transverse motions.

• We find that there is no universal density profile for massive haloes in two-dimensional

gravitational clustering. There is a large scatter in inner as well as outer slopes of

density profiles of haloes. Median value of the inner slope of density profiles is dif-

ferent for different models, though the difference is much smaller than the scatter

in values. Tests show that these clusters are close to dynamical equilibrium.

• The difference between the median inner slopes for the different models studied

is smaller than expected from self-similar spherical collapse. We argue that the

difference in significance of transverse motions for different models is a likely reason

for this tendency towards convergence in the direction of a universal profile.

• We find that, in two dimensions, stable clustering implies a virial equilibrium where

the kinetic energy of particles in a halo depends only on the total mass.

Further work is required to test our hypothesis that gravitational collisions between

substructure are responsible for generating coherent transverse motions. Work is in

progress in this direction.



Chapter 8

Patterns in Clustering of Overdense
Regions

In Chapter 1 of this thesis we had introduced the concept of bias in galaxy clustering. We

had defined bias as b2 = ξ̄gal/ξ̄dm, where the symbols carry the same meaning as before.

In early studies, the focus was on linear scales and it was believed for simplicity that b

is a constant. Bias only goes to a constant at scales much larger than the inter-object

separation. At small scales it is likely to be a complicated function of scale, redshift,

galaxy type and cosmological parameters. Time evolution of bias can be understood in

a qualitative manner (Bagla, 1998a). In this study1 we would like to understand the

relationship of galaxy clustering with the initial power spectrum of density fluctuations

and our aim is to relate the underlying cosmological model to observables that quantify

clustering of overdense regions (that can be mapped to collapsed structures like galaxies

as a simple first approximation) through systematic N-Body experiments. The idea of

bias is only an useful intermediate construct in this exercise. Given this, we need not

worry about the differences in deterministic and stochastic bias (Dekel A. and Lahav O.,

1999).

Several models have been constructed to understand the clustering of galaxies in

terms of the distribution of collapsed objects like haloes and their properties. One of

1This chapter is based on Patterns in Clustering of Overdense Regions (J.S. Bagla and S. Ray),
manuscript in preparation.
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the first steps in this direction was the work by Neyman and Scott (1952). A similar

approach was later used by McClelland and Silk (1977) and Peebles (1980) in developing

the cluster model for galaxies. The more modern version of the same, the halo model (Mo

and White, 1996; Mo, Jing and White, 1997; Sheth and Tormen, 1999; Cooray and Sheth,

2002; Smith et al., 2003), combines the extended Press-Schechter mass function with

spherical / elliptical collapse (Mo and White, 1996; Sheth and Lemson, 1999; Sheth, Mo

and Tormen, 2001). In this model, the large scale clustering of the mass arises through

the correlations between different haloes. On small scales the correlations are derived

purely from the substructure in a typical halo.

The hierarchical correlation amplitudes or the reduced moments SQ(r) = ξ̄Q(r)/ξ̄2(r)
Q−1

(defined in Chapter 1) can be computed within the framework of the halo model for both

density peaks and dark matter haloes in the quasi-linear regime (Mo, Jing and White,

1997). To calculate the higher order moments of peaks in the halo model, the general

formalism of Fry and Gaztanaga (1993), where the galaxy overdensity δg is expanded in

a Taylor series as a function of the mass overdensity [δg = F (δ)], is adopted.

The predictions of the halo model have been compared with N-Body simulations

(Casas-Miranda, Mo and Boerner, 2002; Smith et al., 2003). The relation between the

halo autocorrelation function and the mass autocorrelation function can be calculated

simply within the halo model and the results are consistent with the same obtained from

N-Body simulations (Mo and White, 1996; Sheth and Lemson, 1999; Sheth, Mo and

Tormen, 2001).

It has been pointed out that the degeneracy between the density parameter Ωnr

and b is an intrinsic feature of the linear perturbation theory and the use of second order

perturbation theory and higher order statistics allows the degeneracy to be lifted (Fry and

Gaztanaga, 1993; Matarrese, Verde and Heavens, 1997). Second order perturbation theory

has been used to compute bias using the bispectrum in the quasi-linear regime (Matarrese,

Verde and Heavens, 1997; Buchaltar and Kamionkowski, 1999). Simulations have been

used to examine the effect of a bias on the power spectrum and the bispectrum in the non-
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linear regime. It has been found that results follow predicted trends far beyond the regime

where perturbation theory is expected to be valid. The biased bispectrum continues to

follow the so-called hierarchical form in the strongly non-linear regime, independent of

the initial spectrum (Fry, Melott and Shandarin, 1995).

All the models that we have referred to so far concentrate on computing moments

of galaxy distribution in real space, whereas observations of galaxy clustering are largely

carried out in redshift space (Colless, 1998). The halo model can be adapted to include the

effect of redshift space distortions (White, 2000b; Kang et al., 2002). The analytical model

for the non-linear redshift space power spectra of dark matter and haloes is based on a

halo prescription and has three important ingredients : the halo mass function, the density

profile of haloes and the halo-halo redshift power spectrum. The predicted redshift power

spectrum for haloes is found to be insensitive to the details of the halo density profile.

Simulations show that the halo model works well for real space clustering, but not for the

redshift space power spectrum (Kang et al., 2002). The analytical model for redshift space

has not been extended to compute the higher moments of halo distribution in redshift

space.

8.1 Our Methodology

There are no ab initio models for the relation between galaxy clustering and the initial

power spectrum of density fluctuations. In this work we try to systematically identify

generic features in the problem by studying the distributions of overdense regions and

mass in a series of N-Body simulations. We compute moments for mass and overdense

regions in real space and redshift space. We look for patterns in the distributions and

test various hypotheses. Our focus is the non-linear regime and redshift space.

We have focused on simulations of scale invariant power spectra in an Einstein deSitter

background Universe (Ωm = 1.0). Scale-invariant models do not have any intrinsic scale

except for the scale of non-linearity introduced by gravity. These are ideal models for
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such studies as self-similar evolution is a good check for the accuracy of simulations.

We identify high density regions in simulations. These are assumed to host galaxies or

collapsed objects in proportion to mass. We study the distribution of mass as well as the

distribution of overdense regions obtained using high density cutoffs on the distribution

of mass. We also study the effect of redshift space distortions on the same. Moments of

counts of objects in cells are used to compute statistics and study clustering properties. In

particular, we compute the second moment S2 = ξ̄2 and the third moment or the skewness

S3 = ξ̄3/ξ̄
2
2 for various distributions.

We use the parallel TreePM code for all the simulations in this study (Bagla, 2002; Ray

and Bagla, 2004). We used a cubic spline softened force with softening length ǫ = 0.4. We

compute all relevant statistics at scales larger than 2ǫ to avoid errors due to the softening

of the force. We study clustering with initial power spectra of the form :

P (k) = Akn (8.1)

These were normalised such that the linear fluctuations at the scale of 8 grid lengths were

unity at present (a = 1.0). We ran simulations of these models with index n = −1.25,

1.0, −0.5, 0.0 and 1.0 on a 2563 grid containing 2563 particles. We analysed the data for

epochs where rnl ∼ 8 grid lengths for all the models.

We used moments of counts of objects in cells (Peebles, 1980) to compute the volume-

averaged n-point correlation functions (de Vaucouleurs, 1971; Peebles, 1971, 1980) used

for the study. We computed these for the distributions of overdense regions and the

full mass distribution obtained from the N -Body experiments. Fig.8.1 is a plot of S3

vs. S2 for the mass distribution for index n = −1.0. The horizontal lines on the plot

correspond to the prediction from second order perturbation theory (eqns.1.74) in the

weakly non-linear regime (dashed line) and the phenomenological fit to data from earlier

simulations (eqn.1.75) for the strongly non-linear regime (dot-dashed line). It is seen that

the distribution of mass in our N-Body simulations compares well with expectations from

second order perturbation theory and also that our simulations are consistent with earlier

N-Body experiments.
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Figure 8.1: S3 vs. S2 for the mass distribution has been plotted for a simulation with power law index
n = −1.0. The dashed line is the second-order perturbation theory prediction for the weakly non-linear
regime, while the dot-dashed line represents a fit to data from earlier N-Body simulations in the strongly
non-linear regime.

Overdense regions in the simulations are found by computing the Lagrangian density

and then imposing a cutoff on the density. Fig.8.2 shows two slices (thickness 15 grid

lengths) from a simulation of a power law model with index n = 0.0. The left panel

shows all particles in the simulation in the given slice, whereas the right panel shows

only particles within the slice which have Lagrangian densities at least 100 times higher

than the average density (ρ̄) in the simulation. The absence of a uniform low density

background in the right panel leads to a higher degree of clustering.

We have also studied the nature of clustering of matter and overdense regions in

redshift space. In redshift space, observations of clustering are distorted by peculiar
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motions (Kaiser, 1987) along the line of sight (see Chapter 1) and we have to transform

the coordinates of each particle in a simulation following the prescription given in eqn.1.84.

We assume that the size of the simulation volume at any redshift z is much smaller than

the distance to the simulation volume, i.e. we use the plane-parallel approximation.

8.2 Results

We first study the variation of S2 for mass and overdense regions with scale in real as

well as redshift space for various values of the initial power spectrum n in the simulations.

All the figures in this section as well as subsequent sections, unless explicitly stated,

correspond to epochs where rnl ∼ 8 for all the models that we have considered. In fig.8.3,

we have plotted S2 as a function of scale r for mass and overdense regions for various values

of the index n in real space. We applied cutoffs ρcut = 100ρ̄ and 1000ρ̄ to generate the

respective distributions of overdense regions. A solid line represents the mass distribution,

while a dashed line represents a distribution with ρcut = 100ρ̄ and a dot-dashed line one

with ρcut = 1000ρ̄ in all the figures. Fig.8.3 shows that high density regions cluster more

strongly than the underlying mass distribution for all the models and S2 is larger for

more overdense regions. Visualising bias as the difference between the mass distribution

and the distribution of overdense regions, we see that bias decreases monotonically as we

increase the value of n for the same value of ρcut. Therefore, a model with n = −1.0 is

more biased than one with n = 0.0. The biased distributions (i.e. the distributions of

overdense regions) and the unbiased distributions (i.e. the distributions for the underlying

mass) have approximately the same slope only for scales for which S2 ≤ 1 i.e the linear

bias model holds for only large linear scales. Bias is thus scale-dependent at smaller scales.

For n = 0.0, we can see from fig.8.3 that the distributions for overdense regions and

mass are coincident over a wide range of linear scales. This is because, for this case, for

the particular epoch that we have considered, most of the mass has already collapsed into

overdense regions and therefore the distributions of overdense regions are almost the same
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as the mass distribution (Bagla, 1998a). We have plotted S2 as a function of scale at an

earlier epoch (rnl ∼ 4) for mass and overdense regions (ρcut = 100ρ̄) in fig.8.4 for index

n = 0.0. We can see that at this epoch mass and overdense regions have different levels

of clustering over the entire range of scales of interest.

In fig.8.5, we have plotted S2 as a function of r for both mass and overdense regions

for various values of the index n in redshift space. We applied cutoffs of ρcut = 100ρ̄,

1000ρ̄ as before for the distributions of overdense regions. This figure is qualitatively

similar to fig.8.3. This means that as far as the second moment is concerned, redshift

space distortions play a less serious role compared to bias in modifying the nature of

clustering.

In fig.8.6, we have plotted the second moment of overdense regions as a function of the

second moment of the matter distribution in real and redshift space for index n = −1.25.

A dashed line represents a distribution with ρcut = 100ρ̄ and a dot-dashed line one with

ρcut = 1000ρ̄ in both panels of the figure. The upper panel is for real space, while the lower

panel is for redshift space. The figure clearly shows that there is a scale dependence in

bias that cannot be accounted for by a constant factor in the non-linear regime. Further,

this dependence is different in real and redshift space.

Next, we study the variation of S3 for mass and overdense regions with scale in real

as well as redshift space for the same models as above. Fig.8.7 shows the dependence of

S3 on scale, bias and the index n of the initial power spectrum in real space. We applied

the same density cutoffs on the matter distribution as before to obtain the distributions of

overdense regions. A feature common with the second moment is that models with more

negative indices are more biased for the same value of ρcut. Within the same model, S3 is

increasingly small for larger values of ρcut used to generate the distributions of overdense

regions, i.e. larger the bias, smaller is the value of S3.

In fig.8.8, we show the dependence of S3 on scale, the initial power spectrum and bias

in redshift space. We find that in redshift space S3 for overdense regions with ρcut ≥ 100ρ̄
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does not depend on the initial power spectrum for S2 ≥ 1. Redshift space effects also

make S3 for the distribution of mass as well as the distributions of overdense regions

scale-independent at scales at which S2 ≥ 1. The finger-of-god effect (Davis and Peebles,

1983; Hamilton, 1997; Peacock et al., 2001) appears to override all other influences at

small non-linear scales in redshift space.

We also simulated the ΛCDM model with Ωb = 0.05, Ωdm = 0.25 and Ωnr = 0.3 and

we have shown some results for the epoch a = 1 in fig.8.9. The upper left panel of fig.8.9

shows S2 as a function of r for mass and overdense regions in real space, while the upper

right panel shows the same in redshift space. The lower set of panels shows S3 as the

function of S2 in real (lower left panel) and redshift (lower right panel) space for mass and

overdense regions. These plots show the same features as the earlier cases with power law

initial spectra, particularly the striking nature of S3 in redshift space. Our conclusions

therefore appear to be true across different initial conditions and different cosmological

models. Also the features visible in the lower right panel of fig.8.9 are consistent with

observations of the third moment of galaxy clustering in redshift space (Croton et al.,

2004). We expect that halo-based models should be able to explain the behaviour of S3

that we are seeing in redshift space using N-Body simulations. It should also be possible

to use our analysis as a discriminant between different models for bias. This is work in

progress.

8.3 Discussion

In this chapter we have studied the clustering properties of mass and overdense regions in

real space as well as redshift space in simulations of power law or scale invariant models.

The distribution of mass in our N-Body simulations compares well with expectations

from second order perturbation theory (fig.8.1). The second moment of the distribution

of particles in overdense regions shows expected behaviour, i.e. overdense regions show a

greater tendency to cluster as compared to the matter distribution given by all particles
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in a simulation.

The following features emerge clearly from the analysis. We summarise our results in

real space first. Bias affects clustering in a significant manner. Changes in the second as

well as the third moment of distributions due to the influence of bias depend significantly

on the index of the power spectrum. Models with more negative indices tend to have a

larger bias. The effect of bias for a given initial power spectrum is also monotonic, i.e. S2

and S3 for a distribution vary monotonically with the amount of bias.

Redshift space distortions play a more dominant role than bias and significantly

modify the nature of clustering. The skewness S3 for distributions with ρcut ≥ 100ρ̄ is

independent of the model at non-linear scales where S2 ≥ 1. We find that redshift space

effects make S3 scale-independent for all models and for all distributions (matter and

overdense regions) at scales where S2 ≥ 1. All of this is probably due to the role played

by the fingers-of-god effect (Hamilton, 1997). Our results are consistent with simulation

studies which have shown that the redshift space halo correlation function is insensitive to

the details of the chosen halo density profile in the halo model (Kang et al., 2002). This

analysis suggests that large peculiar motions within virialised haloes at small scales, that

add a Gaussian spread to the redshift space radial coordinate (White, 2000b), efficiently

remove signatures of initial conditions.
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Figure 8.2: This figure shows two slices from a TreePM simulation of a power law model with index
n = 0.0. The left panel shows all particles in the simulation in the given slice, whereas the right panel
shows only particles within the slice which have Lagrangian densities at least 100 times higher than the
average density in the simulation.
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Figure 8.3: S2 is plotted as a function of scale in real space for mass and overdense regions for various
power law models. A solid line represents the mass distribution, a dashed line a distribution with
ρcut = 100ρ̄ and a dot-dashed line one with ρcut = 1000ρ̄ in all the panels. We can see that bias is
decreasing monotonically as we increase the value of the index n for the same value of the density cutoff
used to generate a specific distribution of overdense regions.
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Figure 8.4: S2 is plotted as a function of scale in real space for mass and overdense regions (ρcut = 100ρ̄)
for index n = 0.0 at an earlier epoch (rnl ∼ 4) with respect to that used for fig.8.3. At this epoch, much
of the mass is still in the underlying matter distribution and overdense regions are evolving independent
of the matter distribution.
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Figure 8.5: S2 is plotted as a function of scale in redshift space for mass and overdense regions for
various power law models. A solid line represents the mass distribution, a dashed line a distribution
with ρcut = 100ρ̄ and a dot-dashed line one with ρcut = 1000ρ̄ in all the panels. We can see that bias
is decreasing monotonically as we increase the value of index n for the same value of the density cutoff
used to generate a specific distribution of overdense regions.
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Figure 8.6: The second moment of overdense regions is plotted as a function of the second
moment of the matter distribution in real and redshift space for index n = −1.25. The
upper panel is for real space, while the lower panel is for redshift space. A dashed line
represents a distribution with ρcut = 100ρ̄ and a dot-dashed line one with ρcut = 1000ρ̄ in
both panels.
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Figure 8.7: S3 is plotted as a function of scale in real space for mass and overdense regions for various
power law models. A solid line represents the mass distribution, a dashed line a biased distribution with
ρcut = 100ρ̄ and a dot-dashed line one with ρcut = 1000ρ̄ in all the panels. Within the same model, S3

is decreasing monotonically with increase in density threshold.
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Figure 8.8: S3 is plotted as a function of scale in redshift space for mass and overdense regions for
various power law models. A solid line represents the mass distribution, a dashed line a distribution with
ρcut = 100ρ̄ and a dot-dashed line one with ρcut = 1000ρ̄ in all the panels. Redshift space distortions
make S3 almost independent of bias and the power law index for scales at which S2 ≥ 1.
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Figure 8.9: The upper left panel of this figure shows S2 as a function of r for mass and overdense
regions in real space, while the upper right panel shows the same in redshift space for a simulation of
the ΛCDM model with Ωb = 0.05, Ωdm = 0.25 and Ωnr = 0.3 at epoch a = 1. The lower set of panels
shows S3 as the function of S2 in real (lower left panel) and redshift (lower right panel) space for mass
and overdense regions. A solid line represents the mass distribution, a dashed line a distribution with
ρcut = 100ρ̄ and a dot-dashed line one with ρcut = 1000ρ̄ in all the panels.
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